Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system

Information

  • Patent Grant
  • 10008889
  • Patent Number
    10,008,889
  • Date Filed
    Thursday, August 21, 2014
    10 years ago
  • Date Issued
    Tuesday, June 26, 2018
    6 years ago
Abstract
Disclosed here are wireless power delivery systems including one or more wireless power transmitters and one or more power receivers. Disclosed here are methods of using self-test software for fault detection in wireless power receivers. The methods include the analysis of one or more system operational metrics to evaluate the status of wireless power receivers. The results of the tests may be sent to wireless power transmitters to further analysis; all test results ultimately are sent to the operator of the wireless power delivery system.
Description
BACKGROUND

Field of the Disclosure


The present disclosure relates in general to wireless power transmission systems, and more specifically to methods of testing wireless power receivers.


Background Information


Electronic devices such as laptop computers, smartphones, portable gaming devices, tablets and so forth may require power for performing their intended functions. This may require having to charge electronic equipment at least once a day, or in high-demand electronic devices more than once a day. Such an activity may be tedious and may represent a burden to users. For example, a user may be required to carry chargers in case his electronic equipment is lacking power. In addition, users have to find available power sources to connect to. Lastly, users must plug in to a wall power socket or other power supply to be able to charge his or her electronic device.


An approach to mitigate this issue may include using RF waves through suitable power transmission techniques such as pocket-forming. This approach may provide wireless power transmission while eliminating the use of wires or pads for charging devices. In addition, electronic equipment may require less components as typical wall chargers may not be required. In some cases, even batteries may be eliminated as a device may fully be powered wirelessly.


The approach may enable the creation of wireless power networks similar in structure to regular wireless local area networks (WLAN) where a wireless access point is used to provide internet or intranet access to different devices. An access point or wireless transmitter may provide wireless power charging to different receiver devices. However, wireless power transmission may become less effective as the distance between a transmitter and a receiver increases, and may additionally suffer where adverse RF conditions are present in the charging environment. In some applications, pocket forming may require exclusive communication with the power receiver in order to effectively track its location in order to form a pocket of energy.


Additionally, each wireless power receiver of a wireless power transmission system may encounter unexpected or unpredictable errors due to conditions external to said system, or due to defects within software design of said system, due to degradation or unexpected operation of receiver hardware or system hardware. Software within wireless power receivers may include error detection and correction methods so that normal operation of said system may continue in the event of any wireless power receiver error.


Normal, error-free operation of wireless power receivers may be essential for wireless transmission of power from wireless power transmitters to wireless power receivers for various reasons. Reason (A) is that wireless power transmitters have to be capable of dynamically tracking the location of wireless power receivers to continuously determine if a wireless power receiver is nearby or within power transmission range, among other things. Reason (B) is that wireless power transmitters have to continuously read the amount of power that a wireless power receiver is presently receiving for the adjustment of the direction of the transmitter's array of power transmission antennas to maximize power transmission to wireless power receiver, and to allow. Reason (C) is for transmitter to communicate commands to power receiver to control its relay switch that controls the electrical connection to attached client device for transmission of power to said device.


One problem that may arise during system operation may be that if the wireless power receiver software is not tested for error conditions, or if testing cannot be done manually, or if manual testing may not have been performed, or was inadvertently not performed then defects in said receiver software may not be corrected and may cause interruption or unwanted cessation of normal operation of said system.


Another problem may be that if wireless power receiver hardware is not tested for error conditions, or if testing cannot be done manually, or if manual testing was inadvertently not performed, then error conditions in wireless power receiver hardware or errors caused by the environment external to the system may not be detected and may cause a malfunction in receiver's software resulting in interruption or unwanted cessation of normal operation of said system.


Another problem may be that if any of these error conditions only occurs infrequently and was not tested by using automatic test software, then wireless power receiver software may fail to correctly respond to the error condition and may result in interruption or unwanted cessation of normal operation of said system.


Thus, there is a need for providing methods to address these and other concerns.


SUMMARY

The methods presented in the exemplary embodiments describe the use of automatic self-test software built in to wireless power receiver within wireless power transmission systems.


According to some embodiments, after booting, wireless power receiver may automatically run its self-test software periodically and report the result whenever any wireless power transmitter is in communication with the wireless power receiver.


According to some embodiments, the wireless power transmitter may then report each self-test result of the wireless power receiver to the system's management service, or to any user at a system management GUI.


The self-test software may test the software, hardware, operation, performance, communication, or any other aspect of the wireless power receiver. The self-test software may specifically test the management and performance of receiving RF energy, conversion from RF energy to electricity, and transmission of this electricity to an electrically connected client device to power the device or charge its battery. The self-test software may also test the wireless power receiver's performance at communication with a transmitter.


The status, counts or performance of any action or operation performed by wireless power receiver software, hardware, or communication, or any other aspect of the receiver or its relation to the system, may be stored as operational metrics counters within receiver's volatile or non-volatile memory.


The wireless power receiver self-test is performed by receiver's software. When the test is finished, said operational metrics from the test are compared with expected reference metrics. If operational metrics match expected reference values, and there are no erroneous or unexpected patterns in said operational metrics, then test passed, otherwise test failed. Said system will report to system operator the outcome of the test.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure can be better understood by referring to the following figures. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure. In the figures, reference numerals designate corresponding parts throughout the different views.



FIG. 1 illustrates a wireless power transmission example situation using pocket-forming.



FIG. 2 illustrates a component level embodiment for a transmitter, according to an embodiment.



FIG. 3 illustrates a component level embodiment for a receiver, according to an embodiment.



FIG. 4 illustrates an exemplary embodiment of a wireless power network including a transmitter and wireless receivers.



FIG. 5 shows a wireless power transmission network diagram, according to an exemplary embodiment.



FIG. 6 is flowchart of a method for automatically testing the operational status of a wireless power receiver, according to an embodiment.



FIG. 7 is a flowchart of a method for performing a power receiver self-test, according to an embodiment.





DETAILED DESCRIPTION

The present disclosure is here described in detail with reference to embodiments illustrated in the drawings, which form a part here. Other embodiments may be used and/or other changes may be made without departing from the spirit or scope of the present disclosure. The illustrative embodiments described in the detailed description are not meant to be limiting of the subject matter presented here.


DEFINITIONS

As used here, the following terms may have the following definitions:


“Adaptive pocket-forming” refers to dynamically adjusting pocket-forming to regulate power on one or more targeted receivers.


“BTLE”, or “BLE” refers to bluetooth low energy communication hardware and/or software.


“Charge or Charging” refers to the conversion of RF energy into electrical energy by a receiver, using an antenna, where the electrical energy may be transmitted through an electrical circuit connection from the receiver to an electrically connected client device, where the transmitted energy may be used by the device to charge its battery, to power its functions, or any suitable combination.


“Null-space” refers to areas or regions of space where pockets of energy do not form because of destructive interference patterns of RF waves.


“Operator” refers a person who installs or operates a wireless power transmission system. Operator may also refer to a system user.


“Pairing” refers to the association, within the wireless power transmission system's distributed system database, of a single electronic client device with a single power receiver. In one or more embodiments, this may allow a system to determine from said association which power receiver to transmit power to in order to charge said client device upon receiving a command, from a user or automatic system process, that a client device is to be charged.


“Power” refers to electrical energy, where “wireless power transmission” may be synonymous of “wireless energy transmission”, and “wireless power transmission” may be synonymous of “wireless energy transmission”.


“Pocket-forming” refers to generating two or more RF waves which converge in 3-D space, forming controlled constructive and destructive interference patterns.


“Pockets of energy” refers to areas or regions of space where energy or power may accumulate in the form of constructive interference patterns of RF waves.


“Receiver” refers to a device including at least one antenna element, at least one rectifying circuit and at least one power converter, which may utilize pockets of energy for powering, or charging an electronic device.


“System” refers to a wireless power transmission system that wirelessly transmits power from a transmitter to a receiver.


“System Computer” refers to one of the computers of a wireless power transmission system; is part of the communication network between all computers of the wireless power transmission system; may communicate through said network to any other system computer; and may be a wireless power transmitter, a wireless power receiver, a client device, a management service server, or any other.


“Transmitter” refers to a device, including a chip which may generate two or more RF signals, at least one RF signal being phase shifted and gain adjusted with respect to other RF signals, substantially all of which pass through one or more RF antenna such that focused RF signals are directed to a target.


“User” refers to a person using the system to provide wireless power transmission to a client device. User may be an operator.


DESCRIPTION OF THE DRAWINGS

The present disclosure describes methods for the use of automatic self-test software in wireless power receivers, within a wireless power transmission system.


Wireless Power Transmission System Including Disclosed Concepts:


Methods disclosed here may be part of a wireless power transmission system including one or more wireless power transmitters, one or more wireless power receivers, one or more optional system management servers, and one or more optional mobile or hand-held computers, smart phones, or the like, that run the system management GUI app. This app may be made available at, downloaded, and installed from a public software app store or digital application distribution platform, such as Apple's iTunes, Google's Play Store, Amazon's Appstore, and the like.


The power transmitters and management servers may all communicate with each other through a distributed system database or by direct point of point or broadcast messages, and may also communicate present status and any status change to a remote information service that may be located in the Internet cloud.


One or more wireless power transmitters may automatically transmit power to any single wireless power receiver that is close enough for it to establish a communication connection with, using a suitable communication technology, including Bluetooth Low Energy or the like. Said receiver may then power or charge an electrically connected client device, such as mobile device, toy, remote control, lighting device, and the like. A single wireless power transmitter may also power multiple wireless power receivers simultaneously.


Alternately, the system can be configured by the system management GUI to automatically only transmit power to specific wireless power receivers depending on specific system criteria or conditions, such as the time or hour of the day for automatic time-based scheduled power transmission, power receiver physical location, owner of client device, or other any other suitable conditions and/or criteria.


The wireless power receiver is connected electrically to a client device, such as a mobile phone, portable light, TV remote control, or any device that would otherwise require a battery or connection to wall power. In one or more embodiments, devices requiring batteries can have traditional batteries replaced by wireless power receiver batteries. The wireless power receiver then receives energy transmitted from the power transmitter, into receiver's antenna, rectifies, conditions, and sends the resulting electrical energy, through an electrical relay switch, to the electrically connected client device to power it or charge it.


A wireless power transmitter can transmit power to a wireless power receiver, which, in response, can power or charge its associated client device while device is in use or in movement anywhere within the physical power transmission range of the wireless power transmitter. The wireless power transmitter can power multiple devices at the same time.


The wireless power transmitter establishes a real-time communication connection with each receiver for the purpose of receiving feedback in real-time (such as 100 samples per second or more). This feedback from each receiver includes the measurement of energy presently being received, which is used by the transmitter to control the direction of the transmitter's antenna array so that it stays aimed at the receiver, even if the receiver moves to a different physical 3-D location or is in 3-D motion that changes its physical 3-D location.


Multiple wireless power transmitters can power a given, single receiver, in order to substantially increase power to it.


When a transmitter is done transmitting power to a receiver, it may communicate to the receiver that power transmission has ended, and disconnect communication. The wireless power transmitter may then examine its copy of the distributed system database to determine which, if any, receivers in power range it should next transmit power to.



FIG. 1 illustrates wireless power transmission 100 using pocket-forming. A transmitter 102 may transmit controlled Radio Frequency (RF) waves 104 which may converge in 3-D space. RF waves 104 may be controlled through phase and/or relative amplitude adjustments to form constructive and destructive interference patterns (pocket-forming). Pockets of Energy 106 may form at constructive interference patterns and may be 3-Dimensional in shape, whereas null-spaces may be generated at destructive interference patterns. Receiver 108 may then utilize Pockets of Energy 106 produced by pocket-forming for charging or powering an electronic device, for example a laptop computer 110, and thus providing wireless power transmission 100. In embodiments disclosed here, there may be two or more transmitters 102 and one or more receivers 108 for powering various electronic devices. Examples of suitable electronic devices may include smartphones, tablets, music players, and toys, amongst others. In other embodiments, adaptive pocket-forming may be used to regulate power on suitable electronic devices.



FIG. 2 illustrates a component level embodiment for a transmitter 202 which may be utilized to provide wireless power transmission 100 as described in FIG. 1. Transmitter 202 may include a housing 204 where at least two or more antenna elements 206, at least one RF integrated circuit (RFIC 208), at least one digital signal processor (DSP) or micro-controller 210, and one optional communications component 212 may be included. Housing 204 can be made of any suitable material which may allow for signal or wave transmission and/or reception, for example plastic or hard rubber. Antenna elements 206 may include suitable antenna types for operating in suitable frequency bands, such as 900 MHz, 2.5 GHz, or 5.8 GHz, and any other frequency bands that may conform to Federal Communications Commission (FCC) regulations part 18 (Industrial, Scientific and Medical equipment) or any other suitable regulations. Antenna elements 206 may include vertical or horizontal polarization, right hand or left hand polarization, elliptical polarization, or other suitable polarizations as well as suitable polarization combinations. Suitable antenna types may include, for example, patch antennas with heights from about ⅛ inches to about 6 inch and widths from about ⅛ inches to about 6 inch. Other antenna elements 206 types may be used, including meta-materials, dipole antennas, and others. RFIC 208 may include a chip for adjusting phases and/or relative magnitudes of RF signals, which may serve as inputs for antenna elements 206 for controlling pocket-forming. These RF signals may be produced using an external power supply 214 and a local oscillator chip (not shown) using a suitable piezoelectric materials. Micro-controller 210 may then process information sent by a receiver through its own antenna elements for determining optimum times and locations for pocket-forming. In some embodiments, the foregoing may be achieved through communications component 212. Communications component 212 may be based on standard wireless communication protocols which may include Bluetooth, Bluetooth Low Energy, Wi-Fi, and/or ZigBee, amongst others. In addition, communications component 212 may be used to transfer other information, including identifiers for the device or user, battery level, location or other such information. The micro-controller may determine the position of a device using any suitable technology capable of triangulation in communications component 212, including radar, infrared cameras, and sound devices, amongst others.


Multiple transmitter 202 units may be placed together in the same area to deliver more power to individual power receivers or to power more receivers at the same time, said power receivers being within power reception range of two or more of multiple power transmitters 202.



FIG. 3 illustrates a component level embodiment for a receiver 300 which may be used for powering or charging an electronic device as exemplified in wireless power transmission 100. Receiver 300 may include a housing 302 where at least one antenna element 304, one rectifier 306, one power converter 308 and an optional communications component 312 may be included. Housing 302 can be made of any suitable material which may allow for signal or wave transmission and/or reception, for example plastic or hard rubber. Housing 302 may be an external hardware that may be added to different electronic equipment, for example in the form of cases, or may be embedded within electronic equipment as well. Antenna element 304 may include suitable antenna types for operating in frequency bands similar to the bands described for transmitter 202 from FIG. 2. Antenna element 304 may include vertical or horizontal polarization, right hand or left hand polarization, elliptical polarization, or other suitable polarizations as well as suitable polarization combinations. Using multiple polarizations can be beneficial in devices where there may not be a preferred orientation during usage or whose orientation may vary continuously through time, for example a smartphone or portable gaming system. On the contrary, for devices with well-defined orientations, for example a two-handed video game controller, there might be a preferred polarization for antennas which may dictate a ratio for the number of antennas of a given polarization. Suitable antenna types may include patch antennas with heights from about ⅛ inches to about 6 inch and widths from about ⅛ inches to about 6 inch. Patch antennas may have the advantage that polarization may depend on connectivity, i.e. depending on which side the patch is fed, the polarization may change. This may further prove advantageous as a receiver, such as receiver 300, may dynamically modify its antenna polarization to optimize wireless power transmission. Rectifier 306 may include diodes or resistors, inductors or capacitors to rectify the alternating current (AC) voltage generated by antenna element 304 to direct current (DC) voltage. Rectifier 306 may be placed as close as is technically possible to antenna element 304 to minimize losses. After rectifying AC voltage, DC voltage may be regulated using power converter 308. Power converter 308 can be a DC-DC converter which may help provide a constant voltage output, regardless of input, to an electronic device, or as in this embodiment to a battery 314. Typical voltage outputs can be from about 5 volts to about 10 volts. Lastly, communications component 312, similar to that of transmitter 202 from FIG. 2, may be included in receiver 300 to communicate with a transmitter 202 or to other electronic equipment.



FIG. 4 shows an exemplary embodiment of a wireless power network 400 in which one or more embodiments of the present disclosure may operate. Wireless power network 400 may include communication between one or more wireless power transmitters 402 and one or more wireless powered receivers 406 and within client device 438. Client device 404 may be paired with an adaptable paired receiver 406 that may enable wireless power transmission to the client device 404. In another embodiment, a client device 438 may include a wireless power receiver built in as part of the hardware of the device. Client device 404 or 438 may be any device which uses an energy power source, such as, laptop computers, stationary computers, mobile phones, tablets, mobile gaming devices, televisions, radios and/or any set of appliances that may require or benefit from an electrical power source.


In one embodiment, one or more wireless power transmitters 402 may include a microprocessor that integrates a power transmitter manager app 408 (PWR TX MGR APP) as embedded software, and a third party application programming interface 410 (Third Party API) for a Bluetooth Low Energy chip 412 (BTLE CHIP HW). Bluetooth Low Energy chip 412 may enable communication between wireless power transmitter 402 and other devices, including power receiver 406, client device 404, and others. Wireless power transmitter 402 may also include an antenna manager software 414 (Antenna MGR Software) to control an RF antenna array 416 that may be used to form controlled RF waves which may converge in 3-D space and create pockets of energy on wireless powered receivers. In some embodiments, one or more Bluetooth Low Energy chips 412 may utilize other wireless communication protocols, including WiFi, Bluetooth, LTE direct, or the like.


Power transmitter manager app 408 may call third party application programming interface 410 for running a plurality of functions, including the establishing of a connection, ending a connection, and sending data, among others. Third party application programming interface 410 may issue commands to Bluetooth Low Energy chip 412 according to the functions called by power transmitter manager app 408.


Power transmitter manager app 408 may also include a distributed system database 418, which may store relevant information associated with client device 404 or 438, such as their identifiers for a client device 404 or 438, voltage ranges for power receiver 406, location of a client device 404 or 438, signal strength and/or any other relevant information associated with a client device 404 or 438. Database 418 may also store information relevant to the wireless power network, including receiver ID's, transmitter ID's, end-user handheld devices, system management servers, charging schedules, charging priorities and/or any other data relevant to a wireless power network.


Third party application programming interface 410 at the same time may call power transmitter manager app 408 through a callback function which may be registered in the power transmitter manager app 408 at boot time. Third party application programming interface 410 may have a timer callback that may go for ten times a second, and may send callbacks every time a connection begins, a connection ends, a connection is attempted, or a message is received.


Client device 438 may include a power receiver app 420 (PWR RX APP), a third party application programming interface 422 (Third party API) for a Bluetooth Low Energy chip 424 (BTLE CHIP HW), and an RF antenna array 426 which may be used to receive and utilize the pockets of energy sent from wireless power transmitter 402.


Power receiver app 420 may call third party application programming interface 422 for running a plurality of functions, including establishing a connection, ending a connection, and sending data, among others. Third party application programming interface 422 may have a timer callback that may go for ten times a second, and may send callbacks every time a connection begins, a connection ends, a connection is attempted, or message is received.


Client device 404 may be paired to an adaptable power receiver 406 via a BTLE connection 428. A graphical user interface (GUI 430) may be used to manage the wireless power network from a client device 404. GUI 430 may be a software module that may be downloaded from any suitable application store and may run on any suitable operating system, including iOS and Android, amongst others. Client device 404 may also communicate with wireless power transmitter 402 via a BTLE connection 428 to send important data, such as an identifier for the device, battery level information, geographic location data, or any other information that may be of use for wireless power transmitter 402.


A wireless power manager 432 software may be used in order to manage wireless power network 400. Wireless power manager 432 may be a software module hosted in memory and executed by a processor inside a computing device 434. The wireless power manager 432 may include a local application GUI, or host a web page GUI, from where a user 436 may see options and statuses, as well as execute commands to manage the wireless power network 400. The computing device 434 may be connected to the wireless power transmitter 402 through standard communication protocols, including Bluetooth, Bluetooth Low Energy, Wi-Fi, or ZigBee, amongst others. Power transmitter manager app 408 may exchange information with wireless power manager 432 in order to control access and power transmission from client devices 404. Functions controlled by wireless power manager 432 may include scheduling power transmission for individual devices, prioritizing between different client devices, accessing credentials for each client, tracking physical locations of power receivers relative to power transmitter areas, broadcasting messages, and/or any functions required to manage the wireless power network 400.



FIG. 5 illustrates a wireless power transmission system network 500, according to an exemplary embodiment.


According to some embodiments, wireless power transmission system network 500 may include multiple wireless power transmission systems 502 capable of communicating with a remote information service 504 through internet cloud 506.


In some embodiments, wireless power transmission system 502 may include one or more wireless power transmitters 508, one or more power receivers 510, one or more optional back-up servers 512 and a local network 514.


According to some embodiments, each power transmitter 508 may include wireless power transmitter manager 516 software and a distributed wireless power transmission system database 518. Each power transmitter 508 may be capable of managing and transmitting power to one or more power receivers 510, where each power receiver 510 may be capable of charging or providing power to one or more electronic devices 520.


Power transmitter managers 516 may control the behavior of power transmitters 508, monitor the state of charge of electronic devices 520, and control power receivers 510, keep track of the location of power receivers 510, execute power schedules, run system check-ups, and keep track of the energy provided to each of the different electronic devices 520, amongst others.


According to some embodiments, database 518 may store relevant information from electronic devices 520 such as, identifiers for electronic devices 520, voltage ranges for measurements from power receivers 510, location, signal strength and/or any relevant information from electronic devices 520. Database 518 may also store information relevant to the wireless power transmission system 502 such as, receiver ID's, transmitter ID's, end-user handheld device names or ID's, system management server ID's, charging schedules, charging priorities and/or any data relevant to a power transmission system network 500.


Additionally, in some embodiments, database 518 may store data of past and present system status.


The past system status data may include details such as the amount of power delivered to an electronic device 520, the amount of energy that was transferred to a group of electronic devices 520 associated with a user, the amount of time an electronic device 520 has been associated to a wireless power transmitter 508, pairing records, activities within the system, any action or event of any wireless power device in the system, errors, faults, and configuration problems, among others. Past system status data may also include power schedules, names, customer sign-in names, authorization and authentication credentials, encrypted information, physical areas of system operation, details for running the system, and any other suitable system or user-related information.


Present system status data stored in database 518 may include the locations and/or movements in the system, configuration, pairing, errors, faults, alarms, problems, messages sent between the wireless power devices, and tracking information, among others.


According to some exemplary embodiments, databases 518 within power transmitters 508 may further store future system status information, where the future status of the system may be forecasted or evaluated according to historical data from past system status data and present system status data.


In some embodiments, records from all device databases 518 in a wireless power transmission system 502 may also be stored and periodically updated in server 512. In some embodiments, wireless power transmission system network 500 may include two or more servers 512. In other embodiments, wireless power transmission system network 500 may not include any servers 512.


In another exemplary embodiment, wireless power transmitters 508 may further be capable of detecting failures in the wireless power transmission system 502. Examples of failures in power transmission system 502 may include overheating of any component, malfunction, and overload, among others. If a failure is detected by any of wireless power transmitters 508 within the system, then the failure may be analyzed by any wireless power transmitter manager 516 in the system. After the analysis is completed, a recommendation or an alert may be generated and reported to owner of the power transmission system or to a remote cloud-based information service, for distribution to system owner or manufacturer or supplier.


In some embodiments, power transmitters 508 may use network 514 to send and receive information. Network 514 may be a local area network, or any suitable communication system between the components of the wireless power transmission system 502. Network 514 may enable communication between power transmitters, system management servers 512 (if any), and other power transmission systems 502 (if any), amongst others.


According to some embodiments, network 514 may facilitate data communication between power transmission system 502 and remote information service 504 through internet cloud 506.


Remote information service 504 may be operated by the owner of the system, the manufacturer or supplier of the system, or a service provider. Remote management system may include business cloud 522, remote manager software 524, and one or more backend servers 526, where the remote manager software 524 may further include a general database 528. Remote manager software 524 may run on a backend server 526, which may be a one or more physical or virtual servers.


General database 528 may store additional backups of the information stored in the device databases 518. Additionally, general database 528 may store marketing information, customer billing, customer configuration, customer authentication, and customer support information, among others. In some embodiments, general database 528 may also store information, such as less popular features, errors in the system, problems report, statistics, and quality control, among others.


Each wireless power transmitter 508 may periodically establish a TCP communication connection with remote manager software 524 for authentication, problem report purposes or reporting of status or usage details, among others.



FIG. 6 shows a flowchart of a method 600 for automatically testing the operational status of a wireless power receiver unit in a wireless power transmission system, according to an embodiment.


In some embodiments, power receiver self-test software may be included in Power Receiver App, which performs communication with wireless power transmitters and manages the functionality of the power receiver for receiving power and transmitting it to its client device.


Method 600 may start when a power receiver boots up and starts continuous monitoring 602 of power receiver operational metrics. According to an embodiment, values of operational metrics counters may be stored in power receiver's memory. The counters may be updated whenever the power receiver's software detects any kind of event, status, or change in status, of receiver's software, hardware, operation, communication, or performance. According to some embodiments, power receiver memory for storage of system operational metrics may be volatile or non-volatile.


According to some embodiments, wireless power receiver software may include a timer callback from the underlying application programming interface (API) to the CPU. The timer callback may periodically trigger the software that self-tests the wireless power receiver, when time to start 604 self-test is reached. In some embodiments, the self-test may also be run in response to a command received from a wireless power transmitter. In further embodiments, the self-test may also be initiated by boot-up or restart or reset of power receiver's software.


Then, wireless power receiver's software may perform self-test 606. During self-test 606, the wireless power receiver may analyze the present or past status of the receiver's software, hardware, operation, communication, or performance by analyzing the values of the receiver's operational metrics. According to some embodiments, power receiver's software may be capable of detecting indicators of past, present, or possible future errors based on the analysis of the system operational metrics. According to some embodiments, unexpected patterns in metrics may also be interpreted as errors. Self-test 606 may test for any number of software, hardware, operation, communication, or performance errors.


According to some embodiments, self-test 606 may check for and report errors for any kind of unexpected performance operational metrics such as low power transmitted to client device compared with power received at antennas, or such as power at receiver antenna unexpectedly too low for too much time, or such as unexpected low level of power efficiency from received RF power to transmitted electrical power to client device.


In some embodiments, self-test 606 may check for and report errors for any kind of unexpected software operational metrics such as software stack overflow or underflow, or unexpected number or rate of software restarts or watchdog reboots, or metrics of power generated is impossibly high, or the like.


In some embodiments, self-test 606 may check for and report errors for any kind of unexpected hardware operational metrics such as analog-to-digital values below or above expected limits, or errors with relay connection switch to client device in unexpected state, such as open when wireless power receiver is receiving power from a wireless power transmitter, or closed when the wireless power receiver is not receiving power from a wireless power transmitter; or errors for unexpected voltage measured before and after conditioning of voltage from wireless power receiver antenna rectifiers, or conditioning errors, or errors reported by any hardware device, or other erroneous hardware conditions.


In further embodiments, self-test 606 may also check for and report errors for any kind of unexpected communication operational metrics such as count or rate of unexpected disconnections with wireless power transmitter, or count or rate of invalid received communications.


According to an exemplary embodiment, detection of errors may take place by analyzing only the system operational metrics, which may simplify the analysis procedure or may save software development time.


After self-test 606, power receiver's software may generate a test report 608, including system operational metrics and error reports, if found.


Afterwards, the power receiver App may check 610 if there is an available communication connection with a power transmitter. If there is no communication connection established with a wireless power transmitter, the wireless power receiver may store 612 the self-test 606 results or details in its memory, where the memory may be volatile or non-volatile.


If there is an available communication connection with a wireless power transmitter, the wireless power receiver may send 614 the self-test 606 results to the power transmitter. The wireless power transmitter may then analyze 616 operational metrics from the wireless power receiver and compare with operational metrics or other status at the wireless power transmitter to detect other errors.


In some exemplary embodiments, the wireless power receiver may report the results of the self-test 606 that was performed just before establishment of communication connection. This may be reported immediately upon establishment of communication connection with a wireless power transmitter.


Furthermore, in some embodiments, a wireless power receiver may also perform its self-test 606 immediately upon establishment of communication with a wireless power transmitter, and not wait until the next scheduled periodic time.


Then, wireless power transmitter may update 618 its database and store the results of the analysis. Afterwards, wireless power transmitter may send 620 the results to the user by a management mobile device GUI or system server hosted web page, by displayed graph, or line by line report or log of each error, and may include time stamp, ID of wireless power receiver, ID of wireless power transmitter, error code or label or description or other. In some embodiments, a wireless power receiver may be capable of reporting results or details of self-test 606 by blinking or colored LED's, or system management server may report said results by SMS text message, email, or voice synthesis telephone or VOIP call, or other computer-to-human or computer-to-computer means.


According to some embodiments, the wireless power transmitter may communicate any of receiver's automatic self-test result information to any mobile system management GUI client device, or any system management server, or a remote wireless power transmission system information distribution service.


In some embodiments, the wireless power transmitter may distribute the self-test results through a distributed wireless power transmission database to each server, transmitter, and mobile device of said wireless power transmission system.


According to some embodiments, the wireless power transmitter may receive feedback 622 from the user or a remote management system. In some embodiments, a user may issue one or more commands through a system management device including wireless power management software. Then, system management device that receives the command from the user may forward the command to all wireless power transmitters within the system.


Subsequently, the present or next wireless power transmitter in communication with the target wireless power receiver may forward 624 the command to the wireless power receiver. The wireless power receiver may then receive the feedback 622 and take a suitable action 626 in response to the received feedback, such as, but not limited to, rebooting or restarting the power receiver's software.


In some embodiments, user feedback 622 may include manual commands to reset the operational metrics of any wireless power receiver, which effectively erases all past error detections.



FIG. 7 is a flowchart of a method for performing a power receiver self-test 700, according to an embodiment. Method for performing a wireless power receiver self-test 700 may start when wireless power transmitter app detects a suitable trigger 702. Then, self-test software may analyze 704 first system operational metric and determine 706 if the analyzed metric indicates an error. If self-test software determines that the metric indicates an error, self-test software may generate a self-test failed 708 report and the process may end. If self-test software determines that the metric does not indicate an error, self-test software may check 710 if there are more system operational metrics to be analyzed. If there are, the self-test software may continue to analyze the next system operational metric 712 until all system operational metrics have been analyzed or an error has been detected. If there are no more system operational metrics to be analyzed and no errors have been detected, self-test software may generate a self-test passed 714 report and the process may end.


EXAMPLES

In example #1 a wireless power receiver performs a pre-scheduled self-test. To perform the test, the wireless power receiver self-test software analyzes receiver's operational metrics related to software, hardware and communication. In example #1 the self-test software doesn't identify any error and generates self-test report that indicates the test passed. Then, the wireless power receiver sends the report along with the receiver's operational metrics to the wireless power transmitter in communication with the receiver. The wireless power transmitter analyzes report and its included operational metrics, and may compare with its transmitter operational metrics or status, and finds no indicator of possible error. Afterwards, the wireless power transmitter sends the report to a system management server or service.


In example #2 a wireless power receiver performs an automatic self-test. To perform the test, the wireless power receiver self-test software analyzes receiver operational metrics related to software, hardware and communication. In example #2 the self-test software doesn't identify any error and generates the test report. Then, the wireless power receiver sends the report to a wireless power transmitter. The wireless power transmitter analyzes the report and finds an indicator of a possible error. Afterwards, the wireless power transmitter sends the report to a remote management system. The report is analyzed by the remote management system and the operator of the wireless power transmission system is notified of the possible error, and suggestions to prevent the error are delivered to the operator. Then, the operator, through a system management device, changes certain configuration parameters in the system to prevent the error.


The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the steps of the various embodiments must be performed in the order presented. As will be appreciated by one of skill in the art the steps in the foregoing embodiments may be performed in any order. Words such as “then,” “next,” etc. are not intended to limit the order of the steps; these words are simply used to guide the reader through the description of the methods. Although process flow diagrams may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination may correspond to a return of the function to the calling function or the main function.


The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.


Embodiments implemented in computer software may be implemented in software, firmware, middleware, microcode, hardware description languages, or any combination thereof. A code segment or machine-executable instructions may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.


The actual software code or specialized control hardware used to implement these systems and methods is not limiting of the invention. Thus, the operation and behavior of the systems and methods were described without reference to the specific software code being understood that software and control hardware can be designed to implement the systems and methods based on the description herein.


When implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable or processor-readable storage medium. The steps of a method or algorithm disclosed herein may be embodied in a processor-executable software module which may reside on a computer-readable or processor-readable storage medium. A non-transitory computer-readable or processor-readable media includes both computer storage media and tangible storage media that facilitate transfer of a computer program from one place to another. A non-transitory processor-readable storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such non-transitory processor-readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other tangible storage medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer or processor. Disk and disc, as used herein, include compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable medium and/or computer-readable medium, which may be incorporated into a computer program product.


The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.

Claims
  • 1. A wireless power receiver, comprising: a plurality of antenna elements configured to receive power from a controlled constructive interference formed by a set of radio frequency (RF) wireless power waves that are transmitted by a far-field wireless power transmitter that is separate from the wireless power receiver;a rectifier, coupled to the plurality of antenna elements, and configured to rectify AC voltage received from the plurality of antenna elements into DC voltage;a communications component that is distinct and separate from the plurality of antenna elements;a processor coupled to the plurality of antenna elements, the communications component, and the rectifier, the processor being configured to: measure the AC voltage and the DC voltage, andupon an occurrence of a predetermined event, perform a test of the wireless power receiver to test one or more operational metrics;generate a status message indicating one or more statuses of the wireless power receiver based upon comparing a set of the one or more operational metrics associated with at least one of the AC voltage and the DC voltage against a set of one or more reference metrics, wherein the one or more statuses includes an error status upon determining that at least one operational metric does not satisfy a threshold value associated with at least one reference metric in the set of one or more reference metrics;determine whether a communication connection between the wireless power receiver and the far-field wireless power transmitter is available;in accordance with a determination that the communication connection between the wireless power receiver and the far-field wireless power transmitter is available: cause the communication component to transmit the status message to the far-field wireless power transmitter;receive, via the communication component, a response to the status message directly from the far-field wireless power transmitter; andperform an action at the wireless power receiver in accordance with the response received directly from the far-field wireless power transmitter.
  • 2. The wireless power receiver of claim 1, wherein the predetermined event comprises at least one of a boot-up at the wireless power receiver, a restart at the wireless power receiver, a reset at the wireless power receiver, passage of a predetermined period of time, a self-test command received at the communications component from the far-field wireless power transmitter, and a self-test command received at the communications component from a remote server.
  • 3. The wireless power receiver of claim 1, wherein the communications component is configured to operate using communication protocols selected from the group consisting of: Wi-Fi, Bluetooth®, Bluetooth® Low Energy, ZigBee®, and LTE.
  • 4. The wireless power receiver of claim 1, wherein the operational metrics include an amount of power being delivered to a load, and the reference metrics include an amount of power received at the antenna elements, and wherein the error status is associated with the amount of power delivered to the load upon determining that the amount of power delivered to the load does not satisfy a threshold, based at least in part on a comparison of the power received at the antenna elements with the amount of power being deliver to the load.
  • 5. The wireless power receiver of claim 1, wherein the error status is associated with a low amount of power received at the antenna elements not satisfying a threshold for a length of time.
  • 6. The wireless power receiver of claim 1, wherein the error status is associated with a level of power conversion efficiency derived, based at least in part on a comparison of the received power to the power delivered to the load.
  • 7. The wireless power receiver of claim 1, wherein the processor is further configured to: in accordance with determining that the communication connection between the wireless power receiver and the far-field wireless power transmitter is not available, store, in a memory of the wireless power receiver, the status message.
  • 8. The wireless power receiver of claim 1, wherein performing the action at the wireless power receiver comprises restarting the wireless power receiver.
  • 9. The wireless power receiver of claim 1, wherein the error status is associated with an error status of: the rectifier, a voltage regulator, or a switch of the wireless power receiver.
  • 10. The wireless power receiver of claim 9, further comprising, at the wireless power receiver: after receiving, by the communications component, the response to the error status, ceasing to receive the RF wireless power waves from the far-field wireless power transmitter by the plurality of antenna elements.
  • 11. A method comprising: at a wireless power receiver electrically connected to an electronic device:receiving, by a plurality of antenna elements of the wireless power receiver, power from a controlled constructive interference formed by a set of radio frequency (RF) power waves that are transmitted by a far-field wireless power transmitter that is separate from the wireless power receiver;rectifying, by a rectifier of the wireless power receiver coupled to the plurality of antenna elements, AC voltage received from the plurality of antenna elements into DC voltage;measuring, by a processor of the wireless power receiver operatively coupled to the plurality of antenna elements and the rectifier, the AC voltage and the DC voltage;upon the processor determining that a predetermined event has occurred: performing, by the processor, a test of the wireless power receiver to test one or more operational metrics;comparing, by the processor, a set of the one or more operational metrics associated with at least one of the AC voltage and the DC voltage against a set of one or more reference metrics;generating, by the processor, a status message indicating one or more statuses of the wireless power receiver based upon identifying the comparison, wherein the one or more statuses includes an error status upon determining that at least one operational metric does not satisfy a threshold value associated with at least one reference metric in the set of one or more reference metrics;determining whether a communication connection between the wireless power receiver and the far-field wireless power transmitter is available; andin accordance with a determination that the communication connection between the wireless power receiver and the far-field wireless power transmitter is available: transmitting, by a communications component of the wireless power receiver that is distinct and separate from the plurality of antenna elements, the status message to the far-field wireless power transmitter;receiving, by the communications component, a response to the status message directly from the far-field wireless power transmitter; andperforming, by the processor, an action at the wireless power receiver in accordance with the response received directly from the far-field wireless power transmitter.
  • 12. The method of claim 11, wherein the predetermined event comprises at least one of a boot-up at the wireless power receiver, a restart at the wireless power receiver, a reset at the wireless power receiver, passage of a predetermined period of time, a self-test command received by the communications component from the far-field wireless power transmitter, and a self-test command received by the communications component from a remote server.
  • 13. The method of claim 11, wherein the communications component is configured to operate using communications protocols selected from the group consisting of: Wi-Fi, Bluetooth®, Bluetooth® Low Energy, ZigBee®, and LTE.
  • 14. The method of claim 11, wherein the error status is associated with an amount of power delivered to a load compared to the power received at the antenna elements based at least in part on a comparison of the received power to the power delivered to the load.
  • 15. The method of claim 11, wherein the error status is associated with a low amount of power received at the antenna elements not satisfying a threshold for a length of time.
  • 16. The method of claim 11, wherein the error status is associated with a level of power conversion efficiency from the received power at the antennas, based at least in part on a comparison of the received power at the antennas to the power delivered to the load.
  • 17. The method of claim 11, further comprising: in accordance with determining that the communication connection between the wireless power receiver and the far-field wireless power transmitter is not available, storing, in a memory of the wireless power receiver, the error message.
  • 18. The method of claim 11, wherein performing the action at the wireless power receiver comprises restarting the wireless power receiver.
  • 19. The method of claim 11, wherein the error status is associated with an error status of: the rectifier, a voltage regulator, or a switch of the wireless power receiver.
  • 20. The method of claim 19, further comprising, at the wireless power receiver: after receiving, by the communications component, the response to the error status, ceasing to receive the RF wireless power waves from the far-field wireless power transmitter by the plurality of antenna elements.
US Referenced Citations (949)
Number Name Date Kind
787412 Tesla Apr 1905 A
3167775 Guertler Jan 1965 A
3434678 Brown et al. Mar 1969 A
3696384 Lester Oct 1972 A
3754269 Clavin Aug 1973 A
4101895 Jones, Jr. Jul 1978 A
4360741 Fitzsimmons et al. Nov 1982 A
4944036 Hyatt Jul 1990 A
4995010 Knight Feb 1991 A
5200759 McGinnis Apr 1993 A
5211471 Rohrs May 1993 A
5548292 Hirshfield et al. Aug 1996 A
5556749 Mitsuhashi et al. Sep 1996 A
5568088 Dent et al. Oct 1996 A
5646633 Dahlberg Jul 1997 A
5697063 Kishigami et al. Dec 1997 A
5712642 Hulderman Jan 1998 A
5936527 Isaacman et al. Aug 1999 A
5982139 Parise Nov 1999 A
6046708 MacDonald, Jr. et al. Apr 2000 A
6127799 Krishnan Oct 2000 A
6127942 Welle Oct 2000 A
6163296 Lier et al. Dec 2000 A
6289237 Mickle et al. Sep 2001 B1
6329908 Frecska Dec 2001 B1
6421235 Ditzik Jul 2002 B2
6437685 Hanaki Aug 2002 B2
6456253 Rummeli et al. Sep 2002 B1
6476795 Derocher et al. Nov 2002 B1
6501414 Amdt et al. Dec 2002 B2
6583723 Watanabe et al. Jun 2003 B2
6597897 Tang Jul 2003 B2
6615074 Mickle et al. Sep 2003 B2
6650376 Obitsu Nov 2003 B1
6664920 Mott et al. Dec 2003 B1
6798716 Charych Sep 2004 B1
6803744 Sabo Oct 2004 B1
6853197 McFarland Feb 2005 B1
6856291 Mickle et al. Feb 2005 B2
6911945 Korva Jun 2005 B2
6960968 Odendaal et al. Nov 2005 B2
6967462 Landis Nov 2005 B1
6988026 Breed et al. Jan 2006 B2
7003350 Denker et al. Feb 2006 B2
7027311 Vanderelli et al. Apr 2006 B2
7068234 Sievenpiper Jun 2006 B2
7068991 Parise Jun 2006 B2
7183748 Unno et al. Feb 2007 B1
7191013 Miranda et al. Mar 2007 B1
7196663 Bolzer et al. Mar 2007 B2
7205749 Hagen et al. Apr 2007 B2
7222356 Yonezawa et al. May 2007 B1
7274334 o'Riordan et al. Sep 2007 B2
7274336 Carson Sep 2007 B2
7351975 Brady et al. Apr 2008 B2
7359730 Dennis et al. Apr 2008 B2
7392068 Dayan Jun 2008 B2
7403803 Mickle et al. Jul 2008 B2
7443057 Nunally Oct 2008 B2
7451839 Perlman Nov 2008 B2
7463201 Chiang et al. Dec 2008 B2
7471247 Saily Dec 2008 B2
7535195 Horovitz et al. May 2009 B1
7614556 Overhultz et al. Nov 2009 B2
7639994 Greene et al. Dec 2009 B2
7643312 Vanderelli et al. Jan 2010 B2
7652577 Madhow et al. Jan 2010 B1
7679576 Riedel et al. Mar 2010 B2
7702771 Ewing et al. Apr 2010 B2
7786419 Hyde et al. Aug 2010 B2
7812771 Greene et al. Oct 2010 B2
7830312 Choudhury et al. Nov 2010 B2
7844306 Shearer et al. Nov 2010 B2
7868482 Greene et al. Jan 2011 B2
7898105 Greene et al. Mar 2011 B2
7904117 Doan et al. Mar 2011 B2
7911386 Ito et al. Mar 2011 B1
7925308 Greene et al. Apr 2011 B2
7948208 Partovi et al. May 2011 B2
8055003 Mittleman et al. Nov 2011 B2
8070595 Alderucci et al. Dec 2011 B2
8072380 Crouch Dec 2011 B2
8092301 Alderucci et al. Jan 2012 B2
8099140 Arai Jan 2012 B2
8115448 John Feb 2012 B2
8159090 Greene et al. Apr 2012 B2
8159364 Zeine Apr 2012 B2
8180286 Yamasuge May 2012 B2
8228194 Mickle Jul 2012 B2
8234509 Gioscia et al. Jul 2012 B2
8264101 Hyde et al. Sep 2012 B2
8264291 Morita Sep 2012 B2
8276325 Clifton et al. Oct 2012 B2
8278784 Cook et al. Oct 2012 B2
8284101 Fusco Oct 2012 B2
8310201 Wright Nov 2012 B1
8338991 Von Novak et al. Dec 2012 B2
8362745 Tinaphong Jan 2013 B2
8380255 Shearer et al. Feb 2013 B2
8410953 Zeine Apr 2013 B2
8411963 Luff Apr 2013 B2
8432062 Greene et al. Apr 2013 B2
8432071 Huang et al. Apr 2013 B2
8446248 Zeine May 2013 B2
8447234 Cook et al. May 2013 B2
8451189 Fluhler May 2013 B1
8452235 Kirby et al. May 2013 B2
8457656 Perkins et al. Jun 2013 B2
8461817 Martin et al. Jun 2013 B2
8467733 Leabman Jun 2013 B2
8497601 Hall et al. Jul 2013 B2
8497658 Von Novak et al. Jul 2013 B2
8552597 Song et al. Oct 2013 B2
8558661 Zeine Oct 2013 B2
8560026 Chanterac Oct 2013 B2
8604746 Lee Dec 2013 B2
8614643 Leabman Dec 2013 B2
8621245 Shearer et al. Dec 2013 B2
8626249 Kuusilinna et al. Jan 2014 B2
8629576 Levine Jan 2014 B2
8653966 Rao et al. Feb 2014 B2
8674551 Low et al. Mar 2014 B2
8686685 Moshfeghi Apr 2014 B2
8712355 Black et al. Apr 2014 B2
8712485 Tam Apr 2014 B2
8718773 Wills et al. May 2014 B2
8729737 Schatz et al. May 2014 B2
8736228 Freed et al. May 2014 B1
8760113 Keating Jun 2014 B2
8770482 Ackermann et al. Jul 2014 B2
8772960 Yoshida Jul 2014 B2
8823319 Von Novak, III et al. Sep 2014 B2
8832646 Wendling Sep 2014 B1
8854176 Zeine Oct 2014 B2
8860364 Low et al. Oct 2014 B2
8897770 Frolov et al. Nov 2014 B1
8903456 Chu et al. Dec 2014 B2
8917057 Hui Dec 2014 B2
8923189 Leabman Dec 2014 B2
8928544 Massie et al. Jan 2015 B2
8937408 Ganem et al. Jan 2015 B2
8946940 Kim et al. Feb 2015 B2
8963486 Kirby et al. Feb 2015 B2
8970070 Sada et al. Mar 2015 B2
8989053 Skaaksrud et al. Mar 2015 B1
9000616 Greene et al. Apr 2015 B2
9001622 Perry Apr 2015 B2
9006934 Kozakai et al. Apr 2015 B2
9021277 Shearer et al. Apr 2015 B2
9030161 Lu et al. May 2015 B2
9059598 Kang et al. Jun 2015 B2
9059599 Won et al. Jun 2015 B2
9077188 Moshfeghi Jul 2015 B2
9083595 Rakib et al. Jul 2015 B2
9088216 Garrity et al. Jul 2015 B2
9124125 Leabman et al. Sep 2015 B2
9130397 Leabman et al. Sep 2015 B2
9130602 Cook Sep 2015 B2
9142998 Yu et al. Sep 2015 B2
9143000 Leabman et al. Sep 2015 B2
9143010 Urano Sep 2015 B2
9178389 Hwang Nov 2015 B2
9225196 Huang et al. Dec 2015 B2
9240469 Sun et al. Jan 2016 B2
9242411 Kritchman et al. Jan 2016 B2
9244500 Cain et al. Jan 2016 B2
9252628 Leabman et al. Feb 2016 B2
9270344 Rosenberg Feb 2016 B2
9282582 Dunsbergen et al. Mar 2016 B1
9294840 Anderson et al. Mar 2016 B1
9297896 Andrews Mar 2016 B1
9318898 John Apr 2016 B2
9368020 Bell et al. Jun 2016 B1
9401977 Gaw Jul 2016 B1
9409490 Kawashima Aug 2016 B2
9444283 Son et al. Sep 2016 B2
9450449 Leabman et al. Sep 2016 B1
9461502 Lee et al. Oct 2016 B2
9520725 Masaoka et al. Dec 2016 B2
9520748 Hyde et al. Dec 2016 B2
9522270 Perryman et al. Dec 2016 B2
9537354 Bell et al. Jan 2017 B2
9537357 Leabman Jan 2017 B2
9537358 Leabman Jan 2017 B2
9538382 Bell et al. Jan 2017 B2
9544640 Lau Jan 2017 B2
9559553 Bae Jan 2017 B2
9564773 Pogorelik et al. Feb 2017 B2
9571974 Choi et al. Feb 2017 B2
9590317 Zimmerman et al. Mar 2017 B2
9590444 Walley Mar 2017 B2
9620996 Zeine Apr 2017 B2
9647328 Dobric May 2017 B2
9711999 Hietala et al. Jul 2017 B2
9723635 Nambord et al. Aug 2017 B2
9793758 Leabman Oct 2017 B2
9793764 Perry Oct 2017 B2
9806564 Leabman Oct 2017 B2
9819230 Petras et al. Nov 2017 B2
9866279 Bell et al. Jan 2018 B2
20020001307 Nguyen et al. Jan 2002 A1
20020024471 Ishitobi Feb 2002 A1
20020028655 Rosener et al. Mar 2002 A1
20020034958 Oberschmidt et al. Mar 2002 A1
20020054330 Jinbo et al. May 2002 A1
20020065052 Pande et al. May 2002 A1
20020072784 Sheppard et al. Jun 2002 A1
20020095980 Breed et al. Jul 2002 A1
20020103447 Terry Aug 2002 A1
20020133592 Matsuda Sep 2002 A1
20020172223 Stilp Nov 2002 A1
20030005759 Breed et al. Jan 2003 A1
20030058187 Billiet et al. Mar 2003 A1
20030076274 Phelan et al. Apr 2003 A1
20030179152 Watada et al. Sep 2003 A1
20030179573 Chun Sep 2003 A1
20030192053 Sheppard et al. Oct 2003 A1
20040019624 Sukegawa Jan 2004 A1
20040020100 O'Brian et al. Feb 2004 A1
20040036657 Forster et al. Feb 2004 A1
20040066251 Eleftheriades et al. Apr 2004 A1
20040113543 Daniels Jun 2004 A1
20040119675 Washio et al. Jun 2004 A1
20040107641 Walton et al. Jul 2004 A1
20040130425 Dayan et al. Jul 2004 A1
20040130442 Breed Jul 2004 A1
20040142733 Parise Jul 2004 A1
20040145342 Lyon Jul 2004 A1
20040196190 Mendolia et al. Oct 2004 A1
20040203979 Attar et al. Oct 2004 A1
20040207559 Milosavljevic Oct 2004 A1
20040218759 Yacobi Nov 2004 A1
20040259604 Mickle et al. Dec 2004 A1
20040263124 Wieck et al. Dec 2004 A1
20050007276 Barrick et al. Jan 2005 A1
20050030118 Wang Feb 2005 A1
20050046584 Breed Mar 2005 A1
20050055316 Williams Mar 2005 A1
20050093766 Turner May 2005 A1
20050116683 Cheng Jun 2005 A1
20050117660 Vialle et al. Jun 2005 A1
20050134517 Gottl Jun 2005 A1
20050171411 KenKnight Aug 2005 A1
20050198673 Kit et al. Sep 2005 A1
20050227619 Lee et al. Oct 2005 A1
20050232469 Schofield Oct 2005 A1
20050237249 Nagel Oct 2005 A1
20050237258 Abramov et al. Oct 2005 A1
20050282591 Shaff Dec 2005 A1
20060013335 Leabman Jan 2006 A1
20060019712 Choi Jan 2006 A1
20060030279 Leabman et al. Feb 2006 A1
20060033674 Essig, Jr. et al. Feb 2006 A1
20060071308 Tang et al. Apr 2006 A1
20060092079 de Rochemont May 2006 A1
20060094425 Mickle et al. May 2006 A1
20060113955 Nunally Jun 2006 A1
20060119532 Yun et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060160517 Yoon Jul 2006 A1
20060183473 Ukon Aug 2006 A1
20060190063 Kanzius Aug 2006 A1
20060192913 Shutou et al. Aug 2006 A1
20060199620 Greene et al. Sep 2006 A1
20060238365 Vecchione et al. Oct 2006 A1
20060266564 Perlman et al. Nov 2006 A1
20060266917 Baldis et al. Nov 2006 A1
20060278706 Hatakayama et al. Dec 2006 A1
20060284593 Nagy et al. Dec 2006 A1
20060287094 Mahaffey et al. Dec 2006 A1
20070007821 Rossetti Jan 2007 A1
20070019693 Graham Jan 2007 A1
20070021140 Keyes Jan 2007 A1
20070060185 Simon et al. Mar 2007 A1
20070070490 Tsunoda et al. Mar 2007 A1
20070090997 Brown et al. Apr 2007 A1
20070093269 Leabman et al. Apr 2007 A1
20070097653 Gilliland et al. May 2007 A1
20070103110 Sagoo May 2007 A1
20070106894 Zhang May 2007 A1
20070109121 Cohen May 2007 A1
20070139000 Kozuma Jun 2007 A1
20070149162 Greene et al. Jun 2007 A1
20070173196 Gallic Jul 2007 A1
20070173214 Mickle et al. Jul 2007 A1
20070178857 Greene et al. Aug 2007 A1
20070178945 Cook Aug 2007 A1
20070182367 Partovi Aug 2007 A1
20070191074 Harrist et al. Aug 2007 A1
20070191075 Greene et al. Aug 2007 A1
20070197281 Stronach Aug 2007 A1
20070210960 Rofougaran et al. Sep 2007 A1
20070222681 Greene et al. Sep 2007 A1
20070257634 Leschin et al. Nov 2007 A1
20070273486 Shiotsu Nov 2007 A1
20070296639 Hook et al. Dec 2007 A1
20070298846 Greene et al. Dec 2007 A1
20080014897 Cook et al. Jan 2008 A1
20080024376 Norris et al. Jan 2008 A1
20080048917 Achour et al. Feb 2008 A1
20080062062 Borau et al. Mar 2008 A1
20080062255 Gal Mar 2008 A1
20080067874 Tseng Mar 2008 A1
20080074324 Puzella et al. Mar 2008 A1
20080089277 Aledander et al. Apr 2008 A1
20080110263 Klessel et al. May 2008 A1
20080113816 Mahaffey et al. May 2008 A1
20080122297 Arai May 2008 A1
20080123383 Shionoiri May 2008 A1
20080129536 Randall et al. Jun 2008 A1
20080140278 Breed Jun 2008 A1
20080169910 Greene et al. Jul 2008 A1
20080197802 Onishi Aug 2008 A1
20080204342 Kharadly Aug 2008 A1
20080204350 Tam et al. Aug 2008 A1
20080210762 Osada et al. Sep 2008 A1
20080211458 Lawther et al. Sep 2008 A1
20080233890 Baker Sep 2008 A1
20080248758 Schedelbeck et al. Oct 2008 A1
20080248846 Stronach et al. Oct 2008 A1
20080266191 Hilgers Oct 2008 A1
20080278378 Chang et al. Nov 2008 A1
20080309452 Zeine Dec 2008 A1
20090002493 Kates Jan 2009 A1
20090019183 Wu et al. Jan 2009 A1
20090036065 Siu Feb 2009 A1
20090047998 Alberth, Jr. Feb 2009 A1
20090058354 Harrison Mar 2009 A1
20090058361 John Mar 2009 A1
20090058731 Geary et al. Mar 2009 A1
20090067208 Martin et al. Mar 2009 A1
20090096412 Huang Apr 2009 A1
20090096413 Partovi Apr 2009 A1
20090102292 Cook et al. Apr 2009 A1
20090102296 Greene et al. Apr 2009 A1
20090108679 Porwal Apr 2009 A1
20090122847 Nysen et al. May 2009 A1
20090128262 Lee et al. May 2009 A1
20090157911 Aihara Jun 2009 A1
20090200985 Zane et al. Aug 2009 A1
20090206791 Jung Aug 2009 A1
20090207090 Pettus et al. Aug 2009 A1
20090207092 Nysen et al. Aug 2009 A1
20090218884 Soar Sep 2009 A1
20090218891 McCollough Sep 2009 A1
20090219903 Alamouti et al. Sep 2009 A1
20090243397 Cook et al. Oct 2009 A1
20090264069 Yamasuge Oct 2009 A1
20090280866 Lo et al. Nov 2009 A1
20090281678 Wakamatsu Nov 2009 A1
20090284082 Mohammadian Nov 2009 A1
20090284083 Karalis et al. Nov 2009 A1
20090284220 Toncich et al. Nov 2009 A1
20090284227 Mohammadian et al. Nov 2009 A1
20090284325 Rossiter et al. Nov 2009 A1
20090286475 Toncich et al. Nov 2009 A1
20090291634 Saarisalo Nov 2009 A1
20090299175 Bernstein et al. Dec 2009 A1
20090312046 Clevenger et al. Dec 2009 A1
20090315412 Yamamoto et al. Dec 2009 A1
20090322281 Kamijo et al. Dec 2009 A1
20100001683 Huang et al. Jan 2010 A1
20100007307 Baarman et al. Jan 2010 A1
20100007569 Sim et al. Jan 2010 A1
20100019686 Gutierrez, Jr. Jan 2010 A1
20100019908 Cho et al. Jan 2010 A1
20100026605 Yang et al. Feb 2010 A1
20100027379 Saulnier et al. Feb 2010 A1
20100029383 Dai Feb 2010 A1
20100033021 Bennett Feb 2010 A1
20100033390 Alamouti et al. Feb 2010 A1
20100034238 Bennett Feb 2010 A1
20100041453 Grimm, Jr. Feb 2010 A1
20100044123 Perlman et al. Feb 2010 A1
20100054200 Tsai Mar 2010 A1
20100060534 Oodachi Mar 2010 A1
20100066631 Puzella et al. Mar 2010 A1
20100075607 Hosoya Mar 2010 A1
20100079005 Hyde et al. Apr 2010 A1
20100082193 Chiappetta Apr 2010 A1
20100087227 Francos et al. Apr 2010 A1
20100090524 Obayashi Apr 2010 A1
20100090656 Shearer et al. Apr 2010 A1
20100109443 Cook et al. May 2010 A1
20100117926 DeJean, II May 2010 A1
20100119234 Suematsu et al. May 2010 A1
20100123618 Martin et al. May 2010 A1
20100123624 Minear et al. May 2010 A1
20100127660 Cook et al. May 2010 A1
20100142418 Nishioka et al. Jun 2010 A1
20100142509 Zhu et al. Jun 2010 A1
20100148723 Cook et al. Jun 2010 A1
20100151808 Toncich et al. Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100156741 Vazquez et al. Jun 2010 A1
20100164296 Kurs et al. Jul 2010 A1
20100164433 Janefalker et al. Jul 2010 A1
20100171461 Baarman et al. Jul 2010 A1
20100174629 Taylor et al. Jul 2010 A1
20100176934 Chou et al. Jul 2010 A1
20100181961 Novak et al. Jul 2010 A1
20100181964 Huggins et al. Jul 2010 A1
20100194206 Burdo et al. Aug 2010 A1
20100201189 Kirby et al. Aug 2010 A1
20100201201 Mobarhan et al. Aug 2010 A1
20100201314 Toncich et al. Aug 2010 A1
20100207572 Kirby et al. Aug 2010 A1
20100210233 Cook et al. Aug 2010 A1
20100213895 Keating et al. Aug 2010 A1
20100214177 Parsche Aug 2010 A1
20100225270 Jacobs et al. Sep 2010 A1
20100227570 Hendin Sep 2010 A1
20100231470 Lee et al. Sep 2010 A1
20100237709 Hall et al. Sep 2010 A1
20100244576 Hillan et al. Sep 2010 A1
20100256831 Abramo et al. Oct 2010 A1
20100259110 Kurs et al. Oct 2010 A1
20100259447 Crouch Oct 2010 A1
20100264747 Hall et al. Oct 2010 A1
20100277003 Von Novak et al. Nov 2010 A1
20100277121 Hall et al. Nov 2010 A1
20100279606 Hillan et al. Nov 2010 A1
20100289341 Ozaki et al. Nov 2010 A1
20100295372 Hyde et al. Nov 2010 A1
20100308767 Rofougaran et al. Dec 2010 A1
20100309079 Rofougaran et al. Dec 2010 A1
20100309088 Hyvonen et al. Dec 2010 A1
20100315045 Zeine Dec 2010 A1
20100316163 Forenza et al. Dec 2010 A1
20100327766 Recker et al. Dec 2010 A1
20100328044 Waffenschmidt et al. Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20110013198 Shirley Jan 2011 A1
20110028114 Kerselaers Feb 2011 A1
20110031928 Soar Feb 2011 A1
20110032149 Leabman Feb 2011 A1
20110032866 Leabman Feb 2011 A1
20110034190 Leabman Feb 2011 A1
20110034191 Leabman Feb 2011 A1
20110043047 Karalis et al. Feb 2011 A1
20110043163 Baarman Feb 2011 A1
20110043327 Baarman et al. Feb 2011 A1
20110050166 Cook et al. Mar 2011 A1
20110055037 Hayashigawa et al. Mar 2011 A1
20110056215 Ham Mar 2011 A1
20110057607 Carobolante Mar 2011 A1
20110062788 Chen et al. Mar 2011 A1
20110074342 MacLaughlin Mar 2011 A1
20110074349 Ghovanloo Mar 2011 A1
20110074620 Wintermantel Mar 2011 A1
20110078092 Kim et al. Mar 2011 A1
20110090126 Szini et al. Apr 2011 A1
20110109167 Park et al. May 2011 A1
20110114401 Kanno et al. May 2011 A1
20110115303 Baarman et al. May 2011 A1
20110115432 El-Maleh May 2011 A1
20110115605 Dimig et al. May 2011 A1
20110121660 Azancot et al. May 2011 A1
20110122018 Tarng et al. May 2011 A1
20110122026 DeLaquil et al. May 2011 A1
20110127845 Walley et al. Jun 2011 A1
20110127952 Walley et al. Jun 2011 A1
20110133655 Recker et al. Jun 2011 A1
20110133691 Hautanen Jun 2011 A1
20110148578 Aloi et al. Jun 2011 A1
20110151789 Viglione et al. Jun 2011 A1
20110154429 Stantchev Jun 2011 A1
20110156494 Mashinsky Jun 2011 A1
20110156640 Moshfeghi Jun 2011 A1
20110163128 Taguchi et al. Jul 2011 A1
20110175455 Hashiguchi Jul 2011 A1
20110175461 Tinaphong Jul 2011 A1
20110181120 Liu et al. Jul 2011 A1
20110182245 Malkamaki et al. Jul 2011 A1
20110184842 Melen Jul 2011 A1
20110188207 Won et al. Aug 2011 A1
20110194543 Zhao et al. Aug 2011 A1
20110195722 Walter et al. Aug 2011 A1
20110199046 Tsai et al. Aug 2011 A1
20110215086 Yeh Sep 2011 A1
20110217923 Ma Sep 2011 A1
20110220634 Yeh Sep 2011 A1
20110221389 Won et al. Sep 2011 A1
20110222272 Yeh Sep 2011 A1
20110243040 Khan et al. Oct 2011 A1
20110243050 Yanover Oct 2011 A1
20110244913 Kim et al. Oct 2011 A1
20110248573 Kanno et al. Oct 2011 A1
20110248575 Kim et al. Oct 2011 A1
20110249678 Bonicatto et al. Oct 2011 A1
20110254377 Widmer et al. Oct 2011 A1
20110254503 Widmer et al. Oct 2011 A1
20110259953 Baarman et al. Oct 2011 A1
20110273977 Shapira et al. Nov 2011 A1
20110278941 Krishna et al. Nov 2011 A1
20110279226 Chen et al. Nov 2011 A1
20110281535 Low et al. Nov 2011 A1
20110282415 Eckhoff et al. Nov 2011 A1
20110285213 Kowalewski Nov 2011 A1
20110286374 Shin et al. Nov 2011 A1
20110291489 Tsai et al. Dec 2011 A1
20110302078 Failing Dec 2011 A1
20110304216 Baarman Dec 2011 A1
20110304437 Beeler Dec 2011 A1
20110304521 Ando et al. Dec 2011 A1
20120013196 Kim et al. Jan 2012 A1
20120013198 Uramoto et al. Jan 2012 A1
20120013296 Heydari et al. Jan 2012 A1
20120019419 Prat et al. Jan 2012 A1
20120043887 Mesibov Feb 2012 A1
20120051109 Kim et al. Mar 2012 A1
20120051294 Guillouard Mar 2012 A1
20120056486 Endo et al. Mar 2012 A1
20120056741 Zhu et al. Mar 2012 A1
20120068906 Asher et al. Mar 2012 A1
20120074891 Anderson et al. Mar 2012 A1
20120231856 Lee et al. Mar 2012 A1
20120080957 Cooper et al. Apr 2012 A1
20120086284 Capanella et al. Apr 2012 A1
20120095617 Martin et al. Apr 2012 A1
20120098350 Campanella et al. Apr 2012 A1
20120098485 Kang et al. Apr 2012 A1
20120099675 Kitamura et al. Apr 2012 A1
20120103562 Clayton May 2012 A1
20120104849 Jackson May 2012 A1
20120105252 Wang May 2012 A1
20120112532 Kesler et al. May 2012 A1
20120119914 Uchida May 2012 A1
20120126743 Rivers, Jr. May 2012 A1
20120132647 Beverly et al. May 2012 A1
20120133214 Yun et al. May 2012 A1
20120146426 Sabo Jun 2012 A1
20120146576 Partovi Jun 2012 A1
20120146577 Tanabe Jun 2012 A1
20120147802 Ukita et al. Jun 2012 A1
20120149307 Terada et al. Jun 2012 A1
20120150670 Taylor et al. Jun 2012 A1
20120153894 Widmer Jun 2012 A1
20120157019 Li Jun 2012 A1
20120161531 Kim et al. Jun 2012 A1
20120161544 Kashiwagi et al. Jun 2012 A1
20120169276 Wang Jul 2012 A1
20120169278 Choi Jul 2012 A1
20120173418 Beardsmore et al. Jul 2012 A1
20120179004 Roesicke et al. Jul 2012 A1
20120181973 Lyden Jul 2012 A1
20120182427 Marshall Jul 2012 A1
20120187851 Huggins et al. Aug 2012 A1
20120193999 Zeine Aug 2012 A1
20120201153 Bharadia et al. Aug 2012 A1
20120201173 Jian et al. Aug 2012 A1
20120206299 Valdes-Garcia Aug 2012 A1
20120212072 Miyabayashi et al. Aug 2012 A1
20120214462 Chu et al. Aug 2012 A1
20120214536 Kim et al. Aug 2012 A1
20120200399 Chae Sep 2012 A1
20120228956 Kamata Sep 2012 A1
20120235636 Partovi Sep 2012 A1
20120242283 Kim et al. Sep 2012 A1
20120248886 Kesler et al. Oct 2012 A1
20120248888 Kesler et al. Oct 2012 A1
20120248891 Drennen Oct 2012 A1
20120249051 Son et al. Oct 2012 A1
20120262002 Widmer et al. Oct 2012 A1
20120265272 Judkins Oct 2012 A1
20120267900 Huffman et al. Oct 2012 A1
20120268238 Park et al. Oct 2012 A1
20120274154 DeLuca Nov 2012 A1
20120280650 Kim et al. Nov 2012 A1
20120286582 Kim et al. Nov 2012 A1
20120292993 Mettler et al. Nov 2012 A1
20120293021 Teggatz et al. Nov 2012 A1
20120293119 Park et al. Nov 2012 A1
20120299389 Lee et al. Nov 2012 A1
20120299540 Perry Nov 2012 A1
20120299541 Perry Nov 2012 A1
20120299542 Perry Nov 2012 A1
20120300588 Perry Nov 2012 A1
20120300592 Perry Nov 2012 A1
20120300593 Perry Nov 2012 A1
20120306705 Sakurai et al. Dec 2012 A1
20120306707 Yang et al. Dec 2012 A1
20120306720 Tanmi et al. Dec 2012 A1
20120309295 Maguire Dec 2012 A1
20120309308 Kim et al. Dec 2012 A1
20120309332 Liao Dec 2012 A1
20120313449 Kurs Dec 2012 A1
20120326660 Lu et al. Dec 2012 A1
20130002550 Zalewski Jan 2013 A1
20130024059 Miller et al. Jan 2013 A1
20130026981 Van Der Lee Jan 2013 A1
20130026982 Rothenbaum Jan 2013 A1
20130032589 Chung Feb 2013 A1
20130033571 Steen Feb 2013 A1
20130038124 Newdoll et al. Feb 2013 A1
20130038402 Karalis et al. Feb 2013 A1
20130043738 Park et al. Feb 2013 A1
20130044035 Zhuang Feb 2013 A1
20130049471 Oleynik Feb 2013 A1
20130049475 Kim et al. Feb 2013 A1
20130049484 Weissentern et al. Feb 2013 A1
20130057078 Lee Mar 2013 A1
20130057110 Negaard et al. Mar 2013 A1
20130057205 Lee et al. Mar 2013 A1
20130057364 Kesler et al. Mar 2013 A1
20130063082 Lee et al. Mar 2013 A1
20130063143 Adalsteinsson et al. Mar 2013 A1
20130069444 Waffenschmidt et al. Mar 2013 A1
20130077650 Traxler et al. Mar 2013 A1
20130078918 Crowley et al. Mar 2013 A1
20130082651 Park et al. Apr 2013 A1
20130082653 Lee et al. Apr 2013 A1
20130083774 Son et al. Apr 2013 A1
20130088082 Kang et al. Apr 2013 A1
20130088090 Wu Apr 2013 A1
20130088192 Eaton Apr 2013 A1
20130088331 Cho Apr 2013 A1
20130093388 Partovi Apr 2013 A1
20130099389 Hong et al. Apr 2013 A1
20130099586 Kato Apr 2013 A1
20130106197 Bae et al. May 2013 A1
20130107023 Tanaka et al. May 2013 A1
20130119777 Rees May 2013 A1
20130119929 Partovi May 2013 A1
20130120117 Ueda et al. May 2013 A1
20130132010 Winger et al. May 2013 A1
20130134923 Smith May 2013 A1
20130137455 Xia May 2013 A1
20130141037 Jenwatanavet et al. Jun 2013 A1
20130148341 Williams Jun 2013 A1
20130149975 Yu et al. Jun 2013 A1
20130154387 Lee et al. Jun 2013 A1
20130155748 Sundstrom Jun 2013 A1
20130157729 Tabe Jun 2013 A1
20130169061 Microshnichenko et al. Jul 2013 A1
20130169119 Gray Jul 2013 A1
20130169348 Shi Jul 2013 A1
20130171939 Tian et al. Jul 2013 A1
20130175877 Abe et al. Jul 2013 A1
20130178253 Karaoguz Jul 2013 A1
20130181881 Christie et al. Jul 2013 A1
20130190031 Persson et al. Jul 2013 A1
20130193769 Mehta et al. Aug 2013 A1
20130197320 Albert et al. Aug 2013 A1
20130200064 Alexander Aug 2013 A1
20130207477 Nam et al. Aug 2013 A1
20130207604 Zeine Aug 2013 A1
20130207879 Rada et al. Aug 2013 A1
20130210357 Qin et al. Aug 2013 A1
20130221757 Cho et al. Aug 2013 A1
20130234530 Miyauchi Sep 2013 A1
20130234536 Chemishkian et al. Sep 2013 A1
20130234658 Endo et al. Sep 2013 A1
20130241306 Aber et al. Sep 2013 A1
20130241468 Moshfeghi Sep 2013 A1
20130241474 Moshfeghi Sep 2013 A1
20130249478 Hirano Sep 2013 A1
20130249479 Partovi Sep 2013 A1
20130254578 Huang Sep 2013 A1
20130264997 Lee et al. Oct 2013 A1
20130268782 Tam et al. Oct 2013 A1
20130270923 Cook et al. Oct 2013 A1
20130278209 Von Novak Oct 2013 A1
20130285477 Lo et al. Oct 2013 A1
20130285606 Ben-Shalom et al. Oct 2013 A1
20130288600 Kuusilinna et al. Oct 2013 A1
20130293423 Moshfeghi Nov 2013 A1
20130307751 Yu-Juin et al. Nov 2013 A1
20130310020 Kazuhiro Nov 2013 A1
20130311798 Sultenfuss Nov 2013 A1
20130328417 Takeuchi Dec 2013 A1
20130334883 Kim et al. Dec 2013 A1
20130339108 Ryder et al. Dec 2013 A1
20130343251 Zhang Dec 2013 A1
20140001846 Mosebrook Jan 2014 A1
20140001875 Nahidipour Jan 2014 A1
20140001876 Fujiwara et al. Jan 2014 A1
20140006017 Sen Jan 2014 A1
20140008992 Leabman Jan 2014 A1
20140008993 Leabman Jan 2014 A1
20140009108 Leabman Jan 2014 A1
20140009110 Lee Jan 2014 A1
20140011531 Burstrom et al. Jan 2014 A1
20140015336 Weber et al. Jan 2014 A1
20140015344 Mohamadi Jan 2014 A1
20140021907 Yun et al. Jan 2014 A1
20140021908 McCool Jan 2014 A1
20140035524 Zeine Feb 2014 A1
20140035526 Tripathi et al. Feb 2014 A1
20140035786 Ley Feb 2014 A1
20140043248 Yeh Feb 2014 A1
20140049422 Von Novak et al. Feb 2014 A1
20140054971 Kissin Feb 2014 A1
20140055098 Lee et al. Feb 2014 A1
20140057618 Zirwas et al. Feb 2014 A1
20140062395 Kwon et al. Mar 2014 A1
20140082435 Kitgawa Mar 2014 A1
20140086125 Polo et al. Mar 2014 A1
20140086592 Nakahara et al. Mar 2014 A1
20140091756 Ofstein et al. Apr 2014 A1
20140091968 Harel et al. Apr 2014 A1
20140103869 Radovic Apr 2014 A1
20140111147 Soar Apr 2014 A1
20140113689 Lee Apr 2014 A1
20140117946 Muller et al. May 2014 A1
20140118140 Amis May 2014 A1
20140128107 An May 2014 A1
20140132110 Partovi May 2014 A1
20140133279 Khuri-Yakub May 2014 A1
20140139034 Sankar et al. May 2014 A1
20140139039 Cook et al. May 2014 A1
20140139180 Kim et al. May 2014 A1
20140141838 Cai et al. May 2014 A1
20140142876 John et al. May 2014 A1
20140143933 Low et al. May 2014 A1
20140145879 Pan May 2014 A1
20140145884 Dang et al. May 2014 A1
20140152117 Sanker Jun 2014 A1
20140159651 Von Novak et al. Jun 2014 A1
20140159652 Hall et al. Jun 2014 A1
20140159662 Furui Jun 2014 A1
20140159667 Kim et al. Jun 2014 A1
20140169385 Hadani et al. Jun 2014 A1
20140175893 Sengupta et al. Jun 2014 A1
20140176054 Porat et al. Jun 2014 A1
20140176061 Cheatham, III et al. Jun 2014 A1
20140177399 Teng et al. Jun 2014 A1
20140184148 Van Der Lee et al. Jul 2014 A1
20140184155 Cha Jul 2014 A1
20140184163 Das et al. Jul 2014 A1
20140184170 Jeong Jul 2014 A1
20140191568 Partovi Jul 2014 A1
20140194092 Wanstedt et al. Jul 2014 A1
20140194095 Wanstedt et al. Jul 2014 A1
20140206384 Kim et al. Jul 2014 A1
20140210281 Ito et al. Jul 2014 A1
20140217955 Lin Aug 2014 A1
20140217967 Zeine et al. Aug 2014 A1
20140225805 Pan et al. Aug 2014 A1
20140232320 Ento July et al. Aug 2014 A1
20140232610 Shigemoto et al. Aug 2014 A1
20140239733 Mach et al. Aug 2014 A1
20140241231 Zeine Aug 2014 A1
20140245036 Oishi Aug 2014 A1
20140246416 White Sep 2014 A1
20140247152 Proud Sep 2014 A1
20140252813 Lee et al. Sep 2014 A1
20140252866 Walsh et al. Sep 2014 A1
20140265725 Angle et al. Sep 2014 A1
20140265727 Berte Sep 2014 A1
20140265943 Angle et al. Sep 2014 A1
20140266025 Jakubowski Sep 2014 A1
20140273892 Nourbakhsh Sep 2014 A1
20140281655 Angle et al. Sep 2014 A1
20140292090 Cordeiro et al. Oct 2014 A1
20140300452 Rofe et al. Oct 2014 A1
20140312706 Fiorello et al. Oct 2014 A1
20140325218 Shimizu et al. Oct 2014 A1
20140327320 Muhs et al. Nov 2014 A1
20140327390 Park et al. Nov 2014 A1
20140346860 Aubry et al. Nov 2014 A1
20140354063 Leabman et al. Dec 2014 A1
20140354221 Leabman et al. Dec 2014 A1
20140355718 Guan et al. Dec 2014 A1
20140357309 Leabman et al. Dec 2014 A1
20140368048 Leabman Dec 2014 A1
20140368161 Leabman et al. Dec 2014 A1
20140368405 Ek et al. Dec 2014 A1
20140375139 Tsukamoto Dec 2014 A1
20140375253 Leabman et al. Dec 2014 A1
20140375255 Leabman et al. Dec 2014 A1
20140375258 Arkhipenkov Dec 2014 A1
20140375261 Manova-Elssibony et al. Dec 2014 A1
20140376646 Leabman et al. Dec 2014 A1
20150001949 Leabman et al. Jan 2015 A1
20150002086 Matos et al. Jan 2015 A1
20150003207 Lee et al. Jan 2015 A1
20150008980 Kim et al. Jan 2015 A1
20150011160 Uurgovan et al. Jan 2015 A1
20150015180 Miller et al. Jan 2015 A1
20150015182 Brandtman et al. Jan 2015 A1
20150015192 Leabamn Jan 2015 A1
20150015194 Leabman et al. Jan 2015 A1
20150015195 Leabman et al. Jan 2015 A1
20150021990 Myer et al. Jan 2015 A1
20150022008 Leabman et al. Jan 2015 A1
20150022009 Leabman et al. Jan 2015 A1
20150022010 Leabman et al. Jan 2015 A1
20150023204 Wil et al. Jan 2015 A1
20150028688 Masaoka Jan 2015 A1
20150028694 Leabman et al. Jan 2015 A1
20150028697 Leabman et al. Jan 2015 A1
20150028875 Irie et al. Jan 2015 A1
20150029397 Leabman et al. Jan 2015 A1
20150035378 Calhoun Feb 2015 A1
20150035715 Kim et al. Feb 2015 A1
20150041459 Leabman et al. Feb 2015 A1
20150042264 Leabman et al. Feb 2015 A1
20150042265 Leabman et al. Feb 2015 A1
20150044977 Ramasamy et al. Feb 2015 A1
20150046526 Bush et al. Feb 2015 A1
20150061404 Lamenza et al. Mar 2015 A1
20150076917 Leabman et al. Mar 2015 A1
20150076927 Leabman et al. Mar 2015 A1
20150077036 Leabman et al. Mar 2015 A1
20150077037 Leabman et al. Mar 2015 A1
20150091520 Blum et al. Apr 2015 A1
20150091706 Chemishkian et al. Apr 2015 A1
20150097663 Sloo et al. Apr 2015 A1
20150102681 Leabman et al. Apr 2015 A1
20150102764 Leabman et al. Apr 2015 A1
20150102769 Leabman et al. Apr 2015 A1
20150102973 Hand et al. Apr 2015 A1
20150108848 Joehren Apr 2015 A1
20150109181 Hyde et al. Apr 2015 A1
20150115877 Aria et al. Apr 2015 A1
20150115878 Park Apr 2015 A1
20150123483 Leabman et al. May 2015 A1
20150123496 Leabman et al. May 2015 A1
20150128733 Taylor et al. May 2015 A1
20150130285 Leabman et al. May 2015 A1
20150130293 Hajimiri et al. May 2015 A1
20150148664 Stolka et al. May 2015 A1
20150155737 Mayo Jun 2015 A1
20150155738 Leabman et al. Jun 2015 A1
20150162751 Leabman et al. Jun 2015 A1
20150162779 Lee et al. Jun 2015 A1
20150171513 Chen et al. Jun 2015 A1
20150171656 Leabman et al. Jun 2015 A1
20150171658 Manova-Elssibony Jun 2015 A1
20150171931 Won et al. Jun 2015 A1
20150177326 Chakraborty Jun 2015 A1
20150180133 Hunt Jun 2015 A1
20150188352 Peek et al. Jul 2015 A1
20150199665 Chu Jul 2015 A1
20150207333 Baarman et al. Jul 2015 A1
20150207542 Zeine Jul 2015 A1
20150222126 Leabman et al. Aug 2015 A1
20150236520 Baarman Aug 2015 A1
20150244070 Cheng et al. Aug 2015 A1
20150244187 Horie Aug 2015 A1
20150244201 Chu Aug 2015 A1
20150244341 Ritter et al. Aug 2015 A1
20150249484 Mach et al. Sep 2015 A1
20150255989 Walley et al. Sep 2015 A1
20150263534 Lee et al. Sep 2015 A1
20150263548 Cooper Sep 2015 A1
20150270741 Leabman et al. Sep 2015 A1
20150280484 Radziemski et al. Oct 2015 A1
20150288438 Maltsev et al. Oct 2015 A1
20150312721 Singh Oct 2015 A1
20150318729 Leabman Nov 2015 A1
20150326024 Bell et al. Nov 2015 A1
20150326025 Bell et al. Nov 2015 A1
20150326063 Leabman et al. Nov 2015 A1
20150326068 Bell et al. Nov 2015 A1
20150326069 Petras et al. Nov 2015 A1
20150326070 Petras et al. Nov 2015 A1
20150326072 Petras et al. Nov 2015 A1
20150326142 Petras et al. Nov 2015 A1
20150326143 Petras et al. Nov 2015 A1
20150327085 Hadani Nov 2015 A1
20150333528 Leabman Nov 2015 A1
20150333529 Leabman Nov 2015 A1
20150333573 Leabman Nov 2015 A1
20150333800 Perry et al. Nov 2015 A1
20150340759 Bridgelall et al. Nov 2015 A1
20150340903 Bell et al. Nov 2015 A1
20150340909 Bell et al. Nov 2015 A1
20150340910 Petras et al. Nov 2015 A1
20150340911 Bell et al. Nov 2015 A1
20150341087 Moore et al. Nov 2015 A1
20150349574 Leabman Dec 2015 A1
20150358222 Berger et al. Dec 2015 A1
20150365137 Miller et al. Dec 2015 A1
20150365138 Miller et al. Dec 2015 A1
20160005068 Im et al. Jan 2016 A1
20160012695 Bell et al. Jan 2016 A1
20160013656 Bell et al. Jan 2016 A1
20160013677 Bell et al. Jan 2016 A1
20160013678 Bell et al. Jan 2016 A1
20160013855 Campos Jan 2016 A1
20160020636 Khlat Jan 2016 A1
20160020649 Bell et al. Jan 2016 A1
20160020830 Bell et al. Jan 2016 A1
20160042206 Pesavento et al. Feb 2016 A1
20160054395 Bell et al. Feb 2016 A1
20160054396 Bell et al. Feb 2016 A1
20160054440 Younis Feb 2016 A1
20160056635 Bell Feb 2016 A1
20160056640 Mao Feb 2016 A1
20160056669 Bell Feb 2016 A1
20160056966 Bell Feb 2016 A1
20160065005 Won et al. Mar 2016 A1
20160079799 Khlat Mar 2016 A1
20160094091 Shin et al. Mar 2016 A1
20160094092 Davlantes et al. Mar 2016 A1
20160099601 Leabman et al. Apr 2016 A1
20160099602 Leabman et al. Apr 2016 A1
20160099609 Leabman et al. Apr 2016 A1
20160099610 Leabman et al. Apr 2016 A1
20160099611 Leabman et al. Apr 2016 A1
20160099612 Leabman et al. Apr 2016 A1
20160099613 Leabman et al. Apr 2016 A1
20160099614 Leabman et al. Apr 2016 A1
20160099755 Leabman et al. Apr 2016 A1
20160099756 Leabman et al. Apr 2016 A1
20160099757 Leabman et al. Apr 2016 A1
20160099758 Leabman et al. Apr 2016 A1
20160100124 Leabman et al. Apr 2016 A1
20160100312 Bell et al. Apr 2016 A1
20160126752 Vuori et al. May 2016 A1
20160126776 Kim et al. May 2016 A1
20160141908 Jakl et al. May 2016 A1
20160164563 Khawand et al. Jun 2016 A1
20160181849 Govindaraj Jun 2016 A1
20160181854 Leabman Jun 2016 A1
20160181867 Daniel et al. Jun 2016 A1
20160181873 Mitcheson et al. Jun 2016 A1
20160191121 Bell Jun 2016 A1
20160204622 Leabman Jul 2016 A1
20160204642 Oh Jul 2016 A1
20160238365 Wixey et al. Aug 2016 A1
20160299210 Zeine Oct 2016 A1
20160323000 Liu et al. Nov 2016 A1
20160336804 Son et al. Nov 2016 A1
20160339258 Perryman et al. Nov 2016 A1
20160359367 Rothschild Dec 2016 A1
20170005481 Von Novak, III Jan 2017 A1
20170005516 Leabman et al. Jan 2017 A9
20170005524 Akuzawa et al. Jan 2017 A1
20170005530 Zeine et al. Jan 2017 A1
20170025903 Song et al. Jan 2017 A1
20170026087 Tanabe Jan 2017 A1
20170043675 Jones et al. Feb 2017 A1
20170047784 Jung et al. Feb 2017 A1
20170077735 Leabman Mar 2017 A1
20170077736 Leabman Mar 2017 A1
20170077764 Bell et al. Mar 2017 A1
20170077765 Bell et al. Mar 2017 A1
20170077995 Leabman Mar 2017 A1
20170085120 Leabman et al. Mar 2017 A1
20170085437 Condeixa et al. Mar 2017 A1
20170092115 Sloo et al. Mar 2017 A1
20170110887 Bell et al. Apr 2017 A1
20170110914 Bell Apr 2017 A1
20170134686 Leabman May 2017 A9
20170163076 Park et al. Jun 2017 A1
20170179763 Leabman Jun 2017 A9
Foreign Referenced Citations (48)
Number Date Country
203826555 Sep 2014 CN
104090265 Oct 2014 CN
2000216655 Feb 2002 DE
1028482 Aug 2000 EP
1081506 Mar 2001 EP
2397973 Jun 2010 EP
2346136 Jul 2011 EP
2545635 Jan 2013 EP
2404497 Feb 2005 GB
2006157586 Jun 2006 JP
2007043432 Feb 2007 JP
2008167017 Jul 2008 JP
20060061776 Jun 2006 KR
20070044302 Apr 2007 KR
100755144 Sep 2007 KR
20110132059 Dec 2011 KR
20110135540 Dec 2011 KR
20120009843 Feb 2012 KR
20120108759 Oct 2012 KR
1020130026977 Mar 2013 KR
9952173 Oct 1999 WO
WO 200111716 Feb 2001 WO
2004077550 Sep 2004 WO
2003091943 Nov 2006 WO
WO 2006122783 Nov 2006 WO
2008156571 Dec 2008 WO
2010022181 Feb 2010 WO
WO 2010039246 Apr 2010 WO
WO 2010138994 Dec 2010 WO
2011112022 Sep 2011 WO
WO 2012177283 Dec 2012 WO
2013035190 Mar 2013 WO
WO 2013031988 Mar 2013 WO
WO 2013038074 Mar 2013 WO
WO 2013042399 Mar 2013 WO
WO 2013052950 Apr 2013 WO
WO 2013105920 Jul 2013 WO
WO 2014075103 May 2014 WO
WO 2014132258 Sep 2014 WO
WO 2014182788 Nov 2014 WO
WO 2014182788 Nov 2014 WO
WO 2014197472 Dec 2014 WO
WO 2014209587 Dec 2014 WO
WO 2015038773 Mar 2015 WO
WO 2015097809 Jul 2015 WO
WO 2015161323 Oct 2015 WO
WO 2016048512 Mar 2016 WO
WO 2016187357 Nov 2016 WO
Non-Patent Literature Citations (147)
Entry
International Search Report dated Jan. 27, 2015 corresponding to International Patent Application No. PCT/US2014/037170, 4 pages.
International Search Report dated Oct. 16, 2014 corresponding to International Patent Application No. PCT/US2014/041546, 4 pages.
International Search Report dated Oct. 13, 2014 corresponding to International Patent Application No. PCT/US2014/041534, 4 pages.
International Search Report dated Nov. 12, 2014 corresponding to International Patent Application No. PCT/US2014/046956, 4 pages.
Written Opinion of the International Searching Authority dated Nov. 12, 2014 corresponding to International Patent Application No. PCT/US2014/046956, 6 pages.
International Search Report dated Sep. 12, 2014 corresponding to International Patent Application No. PCT/US2014/037072, 3 pages.
Energous Corp., Written Opinion, PCT/US2014/037170 , dated Sep. 15, 2014, 7 pgs.
Energous Corp., IPRP, PCT/US2014/037170, dated Nov. 10, 2015, 8 pgs.
Energous Corp., Written Opinion, PCT/US2014/041534, dated Oct. 13, 2014, 6 pgs.
Energous Corp., IPRP, PCT/US2014/041534, dated Dec. 29, 2015, 7 pgs.
Energous Corp., IPRP, PCT/US2014/046956, dated Jan. 19, 2016, 7 pgs.
Energous Corp., Written Opinion, PCT/US2014/037072, dated Sep. 12, 2014, 5 pgs.
Energous Corp., IPRP, PCT/US2014/037072, dated Nov. 10, 2015, 6 pgs.
Energous Corp., ISRWO, PCT/US2014/068568, dated Mar. 20, 2015, 10 pgs.
Energous Corp., IPRP, PCT/US2014/068568, dated Jun. 14, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/055195, dated Dec. 22, 2014, 11 pgs.
Energous Corp., IPRP, PCT/US2014/055195, dated Mar. 22, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/067291, dated Mar. 4, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2015/067291, dated Jul. 4, 2017, 4 pgs.
Energous Corp., ISRWO, PCT/US2015/067242, dated Mar. 16, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2015/067242, dated Jun. 27, 2017, 7 pgs.
Energous Corp., ISRWO, PCT/US2015/067243, dated Mar. 10, 2016, 11 pgs.
Energous Corp., IPRP, PCT/US2015/067243, dated Jun. 27, 2017, 7 pgs.
Energous Corp., ISRWO, PCT/US2014/037109, dated Apr. 8, 2016, 12 pgs.
Energous Corp., IPRP, PCT/US2014/037109, dated Apr. 12, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/067275, dated Mar. 3, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2015/067275, dated Jul. 4, 2017, 7 pgs.
Energous Corp., ISRWO, PCT/US2015/067245, dated Mar. 17, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2015/067245, dated Jun. 27, 2017, 7 pgs.
Energous Corp., ISRWO, PCT/US2014/041546, dated Oct. 16, 2014, 12 pgs.
Energous Corp., IPRP, PCT/US2014/041546, dated Dec. 29, 2015, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/67250, dated Mar. 30, 2016, 11 pgs.
Energous Corp., IPRP, PCT/US2015/67250, dated Mar. 30, 2016, 10 pgs.
Energous Corp., ISRWO, PCT/US2015/067325, dated Mar. 10, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2015/067325, dated Jul. 4, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/040697, dated Oct. 1, 2014, 12 pgs.
Energous Corp.,IPRP, PCT/US2014/040697, dated Dec. 8, 2015, 9 pgs.
Energous Corp., ISRWO, PCT/US2014/040705, dated Sep. 23, 2014, 8 pgs.
Energous Corp., IPRP, PCT/US2014/040705, dated Dec. 8, 2015, 6 pgs.
Energous Corp., ISRWO, PCT/US2015/067249, dated Mar. 29, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2015/067249, dated Jun. 27, 2017, 7 pgs.
Energous Corp., ISRWO, PCT/US2015/067246, dated May 11, 2016, 18 pgs.
Energous Corp., IPRP, PCT/US2015/067246, dated Jun. 27, 2017, 9 pgs.
Energous Corp., ISRWO, PCT/US2014/059317, dated Feb. 24, 2015, 13 pgs.
Energous Corp., IPRP, PCT/US2014/059317, dated Apr. 12, 2016, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/049669, dated Nov. 13, 2014, 10 pgs.
Energous Corp., IPRP, PCT/US2014/049669, dated Feb. 9, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/041323, dated Oct. 1, 2014, 10 pgs.
Energous Corp., IPRP, PCT/US2014/041323, dated Dec. 22, 2015, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/048002, dated Nov. 13, 2014, 11 pgs.
Energous Corp., IPRP, PCT/US2014/048002, dated Feb. 12, 2015 8 pgs.
Energous Corp., ISRWO, PCT/US2014/062682, dated Feb. 12, 2015, 10 pgs.
Energous Corp., IPRP, PCT/US2014/062682, dated May 3, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/049666, dated Nov. 10, 2014, 7 pgs.
Energous Corp., IPRP, PCT/US2014/049666, dated Feb. 9, 2016, 5 pgs.
Energous Corp., ISRWO, PCT/US2014/046961, dated Nov. 24, 2014, 16 pgs.
Energous Corp., IPRP, PCT/US2014/046961, dated Jan. 19, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067279, dated Mar. 11, 2015, 13 pgs.
Energous Corp., IPRP, PCT/US2015/067279, dated Jul. 4, 2017, 7 pgs.
Energous Corp., ISRWO, PCT/US2014/041342, dated Jan. 27, 2015, 10 pgs.
Energous Corp., IPRP, PCT/US2014/041342, dated Dec. 15, 2015, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/046941, dated Nov. 6, 2014, 11 pgs.
Energous Corp., IPRP, PCT/US2014/046941, dated Jan. 19, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2014/062661, dated Jan. 27, 2015, 12 pgs.
Energous Corp., IPRP, PCT/US2014/062661, dated May 3, 2016, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/059871, dated Jan. 23, 2015, 12 pgs.
Energous Corp., IPRP, PCT/US2014/059871, dated Apr. 12, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2014/045102, dated Oct. 28, 2014, 14 pgs.
Energous Corp., IPRP, PCT/US2014/045102, dated Jan. 12, 2016, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/059340, dated Jan. 15, 2015, 13 pgs.
Energous Corp., IPRP, PCT/US2014/059340, dated Apr. 12, 2016, 11 pgs.
Energous Corp., ISRWO, PCT/US2015/067282, dated Jul. 5, 2016, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067282, dated Jul. 4, 2017, 6 pgs.
Energous Corp., ISRWO, PCT/US2014/041558, dated Oct. 10, 2014, 8 pgs.
Energous Corp., IPRP, PCT/US2014/041558, dated Dec. 29, 2015, 6 pgs.
Energous Corp., ISRWO, PCT/US2014/045119, dated Oct. 13, 2014, 11 pgs.
Energous Corp., IPRP, PCT/US2014/045119, dated Jan. 12, 2016, 9 pgs.
Energous Corp., ISRWO PCT/US2014/045237, dated Oct. 13, 2014, 16 pgs.
Energous Corp., IPRP, PCT/US2014/045237, dated Jan. 12, 2016, 12 pgs.
Energous Corp., ISRWO , PCT/US2014/054897, dated Feb. 17, 2015, 10 pgs.
Energous Corp., IPRP, PCT/US2014/054897, dated Mar. 15, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067334, dated Mar. 3, 2016, 6 pgs.
Energous Corp., IPRP, PCT/US2015/067334, dated Jul. 4, 2017, 5 pgs.
Energous Corp., ISRWO, PCT/US2014/047963, dated Nov. 7, 2014, 13 pgs.
Energous Corp., IPRP, PCT/US2014/047963, dated Jan. 26, 2016, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/054891, dated Dec. 18, 2014, 12 pgs.
Energous Corp., IPRP, PCT/US2014/054891, dated Mar. 15, 2016, 10 pgs.
Energous Corp., ISRWO , PCT/US2014/054953, dated Dec. 4, 2014, 7 pgs.
Energous Corp., IPRP, PCT/US2014/054953, dated Mar. 22, 2016, 5 pgs.
Energous Corp., ISRWO, PCT/US2015/067294, dated Mar. 29, 2016, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067294, dated Jul. 4, 2017, 6 pgs.
Energous Corp., ISRWO, PCT/US2014/062672 dated Jan. 26, 2015, 11 pgs.
Energous Corp., IPRP, PCT/US2014/062672 dated May 10, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/044810 dated Oct. 21, 2014, 12 pgs.
Energous Corp., IPRP, PCT/US2014/044810, dated Jan. 5, 2016, 10 pgs.
Energous Corp., ISRWO, PCT/US2015/067271, dated Mar. 11, 2016, 6 pgs.
Energous Corp., IPRP, PCT/US2015/067271, dated Jul. 4, 2017, 5 pgs.
Energous Corp., ISRWO, PCT/US2014/040648, dated Oct. 10, 2014, 11 pgs.
Energous Corp., IPRP, PCT/US2014/040648, dated Dec. 8, 2015, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/049673, dated Nov. 18, 2014, 10 pgs.
Energous Corp., IPRP, PCT/US2014/049673, dated Feb. 9, 2016, 6 pgs.
Energous Corp., ISRWO, PCT/US2014/068282, dated Mar. 19, 2015, 13 pgs.
Energous Corp., IPRP, PCT/US2014/068282, dated Jun. 7, 2016, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/068586, dated Mar. 20, 2015, 11 pgs.
Energous Corp., IPRP, PCT/US2014/068586, dated Jun. 14, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068504, dated Mar. 30, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068495, dated Mar. 30, 2017, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/067287, dated Feb. 2, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2015/067287, dated Jul. 4, 2017, 6 pgs.
Energous Corp., ISRWO, PCT/US2016/068551, dated Mar. 17, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068498, dated May 17, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068993, dated Mar. 13, 2017, 12 pgs.
Energous Corp., ISRWO, PCT/US2016/068565, dated Mar. 8, 2017, 11 pgs.
Energous Corp., ISRWO, PCT/US2016/068987, dated May 8, 2017, 10 pgs.
Energous Corp., ISRWO, PCT/US2016/069316 , dated Mar. 16, 2017, 15 pgs.
Supplementary European Search Report, EP Patent Application No. EP14818136-5, dated Jul. 21, 2016, 9 pgs.
European Search Report, EP Patent Application No. EP16189052.0, dated Jan. 31, 2017, 11 pgs.
European Search Report, EP Patent Application No. EP16189319-3, dated Feb. 1, 2017, 9 pgs.
European Search Report, EP Patent Application No. EP14822971, dated Feb. 1, 2017, 9 pgs.
European Search Report, EP Patent Application No. EP16189987, dated Feb. 1, 2017, 8 pgs.
European Search Report, EP Patent Application No. 16196205.5, dated Mar. 28, 2017.
European Search Report, EP Patent Application No. 16189300, dated Feb. 28, 2017, 4 pgs.
European Search Report, EP Patent Application No. 16189988.5, dated Mar. 1, 2017, 4 pgs.
European Search Report, EP Patent Application No. 16189982.5, dated Jan. 27, 2017, 9 pgs.
European Search Report, EP Patent Application No. 16189974, dated Mar. 2, 2017, 5 pgs.
European Search Report, EP Patent Application No. 16193743, dated Feb. 2, 2017, 5 pgs.
European Search Report, EP Patent Application No. 14868901.1, dated Jul. 7, 2017, 5 pgs.
L.H. Hsieh et al. Development of a Retrodirective Wireless Microwave Power Transmission System, IEEE, 2003 pp. 393-396.
B.D. Van Veen et al., Beamforming: A Versatile Approach to Spatial Filtering, IEEE, ASSP Magazine, Apr. 1988, pp. 4-24.
Leabman, Adaptive Band-partitioning for Interference Cancellation in Communication System, Thesis Massachusetts Institute of Technology, Feb. 1997, pp. 1-70.
Panda, SIW based Slot Array Antenna and Power Management Circuit for Wireless Energy Harvesting Applications, IEEE APSURSI, Jul. 2012, 2 pgs.
Singh, Wireless Power Transfer Using Metamaterial Bonded Microstrip Antenna for Smart Grid WSN: In Fourth International Conference on Advances in Computing and Communications (ICACC), Aug. 27-29, 2014, Abstract 299.
T. Gill et al. “A System for Change Detection and Human Recognition in Voxel Space using the Microsoft Kinect Sensor,” 2011 IEEE Applied Imagery Pattern Recognition Workshop. 8 pgs.
J. Han et al. Enhanced Computer Vision with Microsoft Kinect Sensor: A Review, IEEE Transactions on Cybernetics vol. 43, No. 5. pp. 1318-1334.
Zhai, “A Practical wireless charging system based on ultra-wideband retro-reflective beamforming” 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON 2010, pp. 1-4.
Mao: BeamStar: An Edge-Based Approach to Routing in Wireless Sensors Networks, IEEE Transactions on Mobile Computing, IEEE Service Center, Los Alamitos, CA US, vol. 6, No. 11, Nov. 1, 2007, 13 pgs.
Smolders—Institute of Electrical 1-15 and Electronics Engineers: “Broadband microstrip array antennas” Digest of the Antennas and Propagation Society International Symposium. Seattle, WA Jun. 19-24, 1994. Abstract.
Paolo Nenzi et al; “U-Helix: On-chip short conical antenna”, 2013 7th European Conference on Antennas and Propagation (EUCAP), ISBN:978-1-4673-2187-7, IEEE, Apr. 8, 2013, 5 pgs.
Adamiuk G et al; “Compact, Dual-Polarized UWB-Antanna, Embedded in a Dielectric” IEEE Transactions on Antenna and Propagation, IEEE Service Center, Piscataway, NJ, US vol. 56, No. 2, ISSN: 0018-926X, abstract Figure 1, Feb. 1, 2010, 8 pgs.
Mascarenas et al.; “Experimental Studies of Using Wireless Energy Transmission for Powering Embedded Sensor Nodes.” Nov. 28, 2009, Journal of Sound and Vibration, pp. 2421-2433.
Li et al. High-Efficiency Switching-Mode Charger System Design Considerations with Dynamic Power Path Management, Mar./Apr. 2012 Issue, 8 pgs.
Energous Corp., ISRWO, PCT/US2018/012806 , dated Mar. 23, 2018, 15 pgs.
ReExam Ordered Control No. 90013793 Aug. 31, 2016, 23 pgs.
PGR2016-00023—Institution Decision, Nov. 29, 2016 29 pgs.
PGR2016-00024—Institution Decision, Nov. 29, 2016, 50 pgs.
PGR2016-00024—Judgement-Adverse, Jan. 20, 2017, 3 pgs.
ReExam Ordered Control No. 90013793 Feb. 2, 2017, 8 pgs.
Related Publications (1)
Number Date Country
20160054396 A1 Feb 2016 US