This application claims the priority, under 35 U.S.C. §119, of German patent application DE 10 2015 217 688.6, filed Sep. 16, 2015; the prior application is herewith incorporated by reference in its entirety.
The invention relates to a method for avoiding collisions of sheets transported on a transport element with a plurality of inkjet heads fitted above the transport element for printing the sheets. The invention further relates to a method for actuator-based lifting movement and to a device for the actuator-based lifting movement of an inkjet head in order to change the spacing from a printing material transport path of printing materials.
In order to print sheets of paper, board and paperboard in small numbers or with individual printing motifs, the use of digital printing machines is known. When inkjet heads are used for printing the sheets, a respective sheet is moved through under the inkjet heads with minimum spacing by a transport system. Known as transport systems are circulating transport belts, for example implemented as suction belts, and rotating cylinders, so-called jetting cylinders, or circulating tablets, such as are described, for example, in U.S. Pat. No. 8,579,286 B2.
In machine concepts using cylinders, such as are described in patent application publication US 2009/0284561 A1, for example, a plurality of inkjet print heads spaced apart radially are arranged above a jetting cylinder, printing sheets moved past at a short distance from the print heads. A plurality of sheets can be attracted to a jetting cylinder by suction and transported simultaneously. In order to ensure a high printing quality and to avoid damage to the print heads, it is important that a respective sheet lies well on the jetting cylinder.
In addition, it is known to monitor the sheet run and to detect defective sheets or sheets lying defectively. In order to prevent damage to the highly sensitive printing nozzles of an inkjet head by turned-up corners, edges or creases, for example, the printing machine is usually stopped and the defective sheet is removed.
Such a printing machine is described in patent application publication US 2013/0307893 A1. If a defective sheet is detected by a sensor placed upstream of the inkjet heads, not only is the machine stopped but all the inkjet heads are also raised and therefore brought into a withdrawn position. The defective sheets can then be removed without difficulty by the machine operator.
An alternative solution is described in patent application publication US 2015/0116395 A1. In order in the digital web printing machine to avoid collisions of the printing material web with the inkjet heads in the event of a printing material web that is defective, the web run is lowered briefly. In digital sheet-fed printing machines, this solution variant does not represent an option, since the logistical attachment of the transport element located in the area of the inkjet heads to transport elements placed upstream and downstream, for example transfer cylinders, would no longer permit continuous transfer and transport of sheets in the event of being lowered.
The disadvantage with the known method for avoiding collisions in digital sheet-fed printing machines is the high outlay for the manual removal of the defective sheets and the immense impairment to the productivity of the machines because of extended stoppage times.
It is accordingly an object of the invention to provide a method for avoiding collisions which overcomes the above-mentioned and other disadvantages of the heretofore-known devices and methods of this general type and to provide for a process in which as few rejects as possible are produced and in which the productivity of the inkjet print heads is exploited in the best possible way.
A further object is to describe a method for the lifting movement of an inkjet head which can be used for the aforementioned method and in which fault sources resulting from the lifting movement are reduced.
A further object is to devise a device in which printing defects on account of changes in the sheet thickness or on account of printing material thickness fluctuations within a sheet are avoided, as few rejects as possible are produced and in which the productivity of the inkjet print heads is exploited in the best possible way.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for avoiding collisions of sheets with inkjet heads in a printing machine, the method comprising:
transporting sheets on a transport element (e.g., an impression cylinder, jetting cylinder) past a plurality of inkjet heads disposed above the transport element for printing the sheets;
monitoring the position of a respective sheet upstream of the inkjet heads in a transport direction;
evaluating a measured result from the position monitoring for detecting a defective sheet; and
when a defective sheet is detected, raising a respective inkjet head before the defective sheet reaches the inkjet head.
The first above-mentioned object is achieved by a method for avoiding collisions of sheets, in particular those made of paper, board and plastic, transported on a transport element, with a plurality of inkjet heads fitted above the transport element for printing the sheets, said method comprising the following steps: Permanent monitoring of the position of a respective sheet and the edges and corners thereof—seen in the transport direction—is carried out upstream of the inkjet heads, in particular by using at least one sensor or a camera. An evaluation of the measured result from the position monitoring is carried out by a machine control system for the detection of defective sheets, for example sheets having dog-ears, creases, etc. Depending on the evaluation of the measured result, if necessary a respective inkjet head is raised in each case immediately before a defective sheet reaches this inkjet head, in particular by using an actuator assigned to the inkjet head. In other words, directly before the defective sheet reaches the inkjet head and could possibly damage or even destroy the latter, the inkjet head is raised into a distanced protective position. This means, first of all the first inkjet head, then the second inkjet head, etc, is raised, that is to say the spacing of the respective inkjet head from the transport element or from the sheet is increased. Not all the inkjet heads are raised jointly at once.
Such a method, in which the inkjet heads are raised sequentially, has the advantage that the digital printing machine does not have to be stopped in the event of defective sheets, and its productivity is not unnecessarily reduced on account of stoppage times. In addition, the main drive of the transport element does not have to be designed for very fast stopping either, and in principle it is possible for higher speeds to be run.
In a particularly advantageous and therefore preferred development of the method for avoiding collisions, in a further additional step, immediately after a defective sheet has passed a respective inkjet head, in each case said inkjet head is lowered back into a near printing position. This means that, one after another, the first inkjet head, then the second inkjet head, etc, is each moved back into the original position. The lifting and lowering sequence may be envisioned as a “wave” at a sporting event.
This has the advantage that the quantity of rejects on account of defective sheets is reduced, since, as a result of the sequential raising and lowering of the individual inkjet heads, only the actually defective sheet is not printed; the preceding and also the following sheet, on the other hand, can be printed.
A further advantage results if, following the digital printing station, a varnishing unit is used. On account of the continuous sheet stream, which means that since one sheet follows another and it is possible for one of the sheets also to be a defective sheet, the varnishing unit can be operated continuously, therefore does not have to withdraw from the printing, and thus no further lost sheets are caused by switching the varnishing unit on and off.
In accordance with an alternative embodiment of the method, which has the same advantages, the inkjet head is not lowered as soon as the defective sheet has passed this inkjet head. Instead, the lowering movement is already begun while the defective sheet is still located underneath this inkjet head. This has the additional advantage that the inkjet head can be lowered more slowly and with lower accelerations and, nevertheless, is again located in its lower printing position in good time. For this purpose, it is necessary to raise the inkjet head higher than the defect of the defective sheet actually requires. In other words, a greater time window for the lowering movement is achieved in that a greater travel is covered during the raising action.
In an advantageous development of the method according to the invention, in the second step, a determination, in particular also a classification, of defect sizes is carried out and, depending on the defect size determined, in the following step the travel (i.e., the stroke, the amplitude) for raising a respective inkjet head is predefined by a machine control system. This has the advantage that, in the case of only small defects, only small lifting movements of the inkjet heads are also carried out; in the case of large defects, on the other hand, large lifting movements are required, and these are also carried out. If, according to the method variant described directly above, the lowering movement has already begun early, this is likewise taken into account in this second method step. In the case in which the determination of the defect sizes results in the defect size lying above a predefined maximum permissible limiting value, then, instead of the sequential raising of the inkjet head, immediate raising of all the inkjet heads by a maximum possible travel in the time that is available, that is to say the greatest possible travel, is triggered, by which means additional security against destruction of the inkjet heads is achieved.
In a development of the method, in order to raise and lower a respective inkjet head, in each case an actuator with a control connection to the machine control system and assigned to the inkjet head is provided, for example an electric motor or a piezo actuator. It is particularly advantageous if the actuator is implemented as a servomotor and is driven by a machine control system by means of an oscillation-optimized control profile; this means that a control profile is stored in the machine control system and, for example, can be applied on the basis of the defect size determined. The raising and lowering can in particular be carried out in accordance with the method for actuator-based lifting movement described in more detail below.
In accordance with an refined feature of the invention, the transport element is implemented as a sheet-carrying cylinder, as a so-called jetting cylinder, having a plurality of sheet support surfaces and channels arranged between the sheet support surfaces. According to the invention, respective raising and lowering of the respective inkjet head is carried out while a channel adjoining a defective sheet is passing the inkjet head. In other words: during a first channel passage, the inkjet head is raised, during the next channel passage the inkjet head is lowered again. Thus, the following sheet can already be printed again and the quantity of rejects is minimized.
In an alternative embodiment, the transport element is implemented as a transport table, what is known as a tablet. The sheets are moved through under the inkjet heads by circulating tablets. The raising and lowering of the heads can be done here while a gap between the tablets is passing the heads.
If a first defective sheet is followed by a further defective sheet, then the lowering movement of the inkjet head into its original printing position is omitted and a respective inkjet head remains in its protective position until a following fault-free sheet follows.
The defective sheets can be removed from the material flow before the sheets are stacked and/or delivered. For this purpose, an ejector module is provided in a deliverer of a digital printing machine, for example a diverter or an ejector drum.
With the above and other objects in view there is also provided, in accordance with the invention, a method for actuator-based lifting movement of an inkjet head, which is particularly suitable for use in the context of the above-described methods. The lifting method comprises:
providing an actuator assigned to the inkjet head and a machine control system for activating the actuator;
implementing an oscillation-optimized and inkjet-printing-optimized movement profile, in order to limit oscillations of the inkjet head and to limit pressure fluctuations in the ink supply of the inkjet head, wherein a control profile is stored in the machine control system; and
selectively lifting the inkjet head by activating the actuator assigned to the inkjet head with the machine control system in accordance with the control profile.
In other words, the respective inkjet head is moved with an oscillation-optimized and inkjet-printing-optimized movement profile in order to limit oscillations of the inkjet head and to limit pressure fluctuations in the ink supply of the inkjet head. The control profile is stored in a machine control system and, by means of the machine control system, an actuator assigned to the inkjet head can be activated with the control profile and the actuator moves the inkjet head in accordance with the movement profile.
In accordance with an advantageous feature of the invention, a family of control profiles for a family of movement profiles can be stored in a memory of the machine control system. Thus, for example, a specific size of defect can be assigned a specific movement profile and therefore control profile. In general terms, different movement profiles can thus be provided for different travels. It is particularly advantageous if a respective movement profile maintains defined maximum acceleration limiting values.
An advantageous movement profile is a jerk-limited movement, which can be implemented as an acceleration trapezoid.
With the above and other objects in view there is also provided, in accordance with the invention, a device for actuator-based lifting movement of an inkjet head in order to change the spacing of the inkjet head from a printing material transport path of printing materials. The novel device comprises:
an actuator;
a mechanism for converting a rotational drive movement of the actuator into a translational movement of the inkjet head; and
a compensation system for compensating for a weight of the inkjet head and for bracing the inkjet head against a machine frame of the device.
That is, there is also provided a device for the actuator-based lifting movement of an inkjet head in order to change the spacing of the inkjet head from a printing material transport path. Sheet or web printing materials are moved through underneath the inkjet head on the printing material transport path and can be printed in the process. The device has an actuator, a mechanism for converting a rotational drive movement of the actuator into a translational movement of the inkjet head, and a compensation system for compensating for the weight of the inkjet head, for example by using a compensation weight. The compensation system in an advantageous embodiment can be implemented as a spring system, which braces the inkjet head against a machine frame of the device. Such a device advantageously achieves the situation in which, in the case of a drive error or defect or a power failure, no undesired movement of the inkjet head takes place, neither raising nor lowering. Here, the spring system compensates for the weight of the inkjet head such that the mechanical friction of the actuator, i.e. the self-locking effect thereof, is sufficient in any position to prevent an undesired movement of the inkjet head. Such an undesired movement would be lowering in printing operation or raising from the capping position (in which the nozzles are protected against drying out) outside the operating times.
In accordance with an advantageous feature of the invention, the mechanism is implemented as a coupler mechanism with coupler, lever and drive shaft. This coupler mechanism has the advantage that a lowest possible position of the inkjet head, which can never be undershot, is defined mechanically.
In accordance with a concomitant feature of the invention, the spring system has at least one tension spring or at least one compression spring. In addition, the spring system can have a setting device for adapting the spring tension.
While the invention is described herein with reference to a sheet-fed system, it is also possible, in principle, to implement the same in digital web-fed printing machines. Instead of the sheet run, in this case the web run is monitored, and the web is understood as a “sheet.”
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a method for avoiding collisions, for adapting spacing and for actuator-based lifting movement, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawing in detail and first, particularly, to
In the illustrated embodiment, the impression cylinder 10 has three sheet-holding regions 11, which are each separated from one another by a channel 12. The sheets 1000 are held on the sheet-holding regions 11 by way of grippers 13.
In order to drive the printing machine 100, a machine control system 15 with an operator interface and a memory is provided. Viewed in the transport direction T, upstream of the inkjet heads 4 there is arranged a camera or alternatively a sensor 14, which is used for the permanent monitoring of the sheets 1000. It is possible to monitor the sheet run or the sheet thickness d. The camera or sensor 14 have a data transmission and transfer connection to the machine control system 15. Here, the camera or sensor 14 must be arranged far enough upstream of the inkjet heads 4 in order that, even in the event of a defect 1001 (cf.
If, for a following sheet 1000, a defect 1001 is likewise detected by the sensor 14, then the inkjet heads 4 remain in their protective position and are only lowered into the printing position again later.
If the result of the evaluation of the measured result from the sensor 14 in the machine control system 15 is that the defect 1001 has a size which is above a predefined limiting value, then immediately after the detection all the inkjet heads can be raised immediately and moved by the greatest possible movement travel. As a result, although the quantity of rejects is increased, since the preceding sheet 1000 can no longer be finally printed and the inkjet heads 4 cannot be lowered into the printing position again quickly enough for a following defect-free sheet 1000, in this way serious damage to the inkjet heads 4 can be avoided. Such raising of the inkjet heads 4 can also be initiated by the machine control system 15 in the case of an emergency stop of the digital printing machine 100.
For the regular sequential raising and lowering of the inkjet head 4.1, 4.2, 4.3 and 4.4 one after another, a lifting movement of 15 mm, for example, can be provided. For the common raising of all the inkjet heads 4 in the event of particularly large defects 1001, a lifting movement h of 50 mm and more, for example, can be provided.
Referring now to
In order to guide the integrated print bar 17 accurately in its lower region and therefore to make the same independent of the exact angular position of the flexibility of the upper linear guides 16 and 18, supporting rollers 23 are provided, which are firmly connected to the side wall, which means the frame of the sheet-fed printing machine 100. The side surfaces of the integrated print bar 17, which are in contact with the supporting rollers 23, can have appropriately machined contact surfaces. The supporting rollers 23 arranged on one side of the integrated print bar 17 can also be of sprung design. Depending on the arrangement of the supporting rollers 23, it may also be sufficient to arrange the supporting rollers 23 only on one side of the integrated print bar 17. During the sequential raising and lowering of the inkjet head 4 with an only small lifting movement h of, for example, 15 to 20 mm, the supporting rollers 23 remain in permanent contact with the integrated print bar 17 and guide the latter. If the inkjet head 4 is raised a great deal in order to avoid a collision on account of a large defect 1001, which means it executes a large lifting movement h of 50 mm, for example, then the supporting rollers 23 lose contact with the integrated print bar 17 and, during the subsequent lowering and “threading” of the integrated print bar 17, the lowering speed must if necessary be reduced, so that excessively high excitation of oscillations of the inkjet head 4 does not occur. Such a speed reduction can be depicted by the control profiles stored in the machine control system 15.
If adaptation of the spacing a of the inkjet head 4 from the jetting cylinder 10 is to be performed in order to adapt to a sheet thickness d, this is likewise possible with the embodiment of the inkjet head 4 illustrated in
Referring now to
In the alternative design variant according to
The following is a summary list of reference numerals and the corresponding structure used in the above description of the invention:
Number | Date | Country | Kind |
---|---|---|---|
10 2015 217 688 | Sep 2015 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5366301 | Martin | Nov 1994 | A |
8579286 | Hirai et al. | Nov 2013 | B2 |
9160892 | Shelhart | Oct 2015 | B1 |
20060132522 | Baker | Jun 2006 | A1 |
20060275532 | Dechert | Dec 2006 | A1 |
20080238959 | Kato et al. | Oct 2008 | A1 |
20090284561 | Fukui | Nov 2009 | A1 |
20090303276 | Van De Wynckel | Dec 2009 | A1 |
20110279507 | Castillo et al. | Nov 2011 | A1 |
20120218328 | Hattori et al. | Aug 2012 | A1 |
20130113862 | Kemma et al. | May 2013 | A1 |
20130307893 | Suda et al. | Nov 2013 | A1 |
20150116395 | Schelmbauer | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
EP 0993957 | Apr 2000 | DE |
2011126131 | Jun 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20170072722 A1 | Mar 2017 | US |