This application claims priority to Chinese Patent Application No. 202311470784.X, filed Nov. 6, 2023, which is herein incorporated by reference in its entirety.
The disclosure relates to the field of shale reservoir exploitation technologies, and more particularly to a method for calculating a surface relaxation rate (also referred to as surface relaxivity) of a shale.
Nuclear magnetic resonance (NMR) experiments combined with constant-rate high-pressure mercury injection experiments can quantitatively characterize a pore throat structure of a shale reservoir. In the experiments, full-scale core samples are selected from a target shale reservoir layer, and smaller rock samples are drilled. The NMR experiments on the smaller rock samples can obtain a relaxation time proportion curve, while the constant-rate high-pressure mercury injection experiments on the smaller rock samples can obtain a mercury intrusion pore throat proportion distribution curve. Relaxation time is T, and a pore throat radius is r. Surface relaxation rates ρ of the smaller rock samples can be calculated based on both the relaxation time and the pore throat radius.
Methods currently used for determining the ρ value generally involve taking an approximate value, such as directly taking a surface relaxation value as 10 for a shale as a broad category, thereby obtaining the subsequent quantitative characterization of an effective pore throat structure distribution. However, the ρ value is related to a type and compositions of a rock, and there is a significant difference in ρ values for different shale lithofacies. If a value of 10 is taken for all types of shale lithofacies, a large error can be produced, affecting a study accuracy of the effective pore throat structure distribution of the reservoir.
In view of this situation, the disclosure precisely analyzes the relaxation time T and the pore throat radius r obtained from the small rock samples, striving to accurately calculate the surface relaxation rate ρ, in order to obtain a complete characterization of the effective pore throat distribution.
In response to problem of poor accuracy of a calculation method for a surface relaxation rate of a shale in the related art, the disclosure provides a method for calculating the surface relaxation rate of the shale. Accurate values of relaxation time T and a pore throat radius r of small rock samples are obtained and calculated to refine results to non-destructively detect distribution characteristics of complete effective pore throats.
The method for calculating the surface relaxation rate of the shale includes following steps:
In an embodiment, the method further includes following steps: taking rock samples from different lithofacies (i.e., different shale types) within a shale formation to obtain a final surface relaxation rate of each rock sample (i.e., a final surface relaxation rate of each lithofacies), determining pore radius-pore volume (also referred to as pore size-porosity) distribution of each lithofacies based on the final surface relaxation rate of each lithofacies, determining shale oil and gas contents in different storage states within a shale reservoir of each lithofacies based on the pore radius-pore volume distribution of each lithofacies, thereby to determine favorable reservoir intervals along a vertical profile, and performing horizontal fracturing based on the favorable reservoir intervals.
Compared to the related art, the disclosure has following beneficial effects.
Other advantages, objectives and features of the disclosure are partly reflected through the following description, and partly understood by those skilled in the art through research and practice of the disclosure.
Preferred embodiments of the disclosure are described below in conjunction with the accompanying drawings. It should be understood that the preferred embodiments described herein are only for illustrating and explaining the disclosure, and are not intended to limit the disclosure.
The method for calculating a surface relaxation rate of a shale includes following steps.
Step 1, full-size (also referred to as full diameter) core samples are selected from a target shale reservoir of the shale to respectively perform a NMR experiment under saturated formation water conditions and to obtain a relaxation time T distribution curve under an influence-eliminated saturated state, i.e., transverse relaxation time distribution of a saturated water sample pore fluid; and a small rock sample with a diameter of 25 millimeters (mm) and a height of 50 mm is selected from the full-size core samples to perform a constant-rate high-pressure mercury injection experiment to obtain a pore throat radius r distribution curve, i.e., transverse relaxation time of the saturated water sample pore fluid. The relaxation time T distribution curve obtained in the embodiment is shown in
According to known formulas, a relationship between a pore throat radius (r) and relaxation time (T) is as follows:
r=ρ×T×Fs (1)
A formula is obtained from the formula (1):
r=ρ×T×2 (2)
An expression formula of the ρ can be obtained by deforming the formula (2):
It can be seen from the formula (3) that the surface relaxation rate ρ depends on the relaxation time T and the pore throat radius r. In the transverse relaxation time distribution diagram of the saturated water sample pore fluid, under the NMR experiment, the relaxation time serves as an abscissa, and a signal intensity serves as an ordinate. Under the high-pressure mercury injection experiment, the pore throat radius serves as the abscissa, and a pore volume serves as the ordinate. When the ordinates correspond to each other, there is a relationship between the abscissas as stated in the formula (3), and the ρ value obtained by the disclosure is the relationship between the relaxation time T under the NMR experiment and the pore throat radius r under the high-pressure mercury injection experiment.
Step 2, a longitudinal comparison and averaging method is used in the disclosure. It is found in experiments that the distribution curves obtained from the NMR experiment and the high-pressure mercury injection experiment are similar in shape. When the abscissas are expanded, there are situations that peaks correspond to peaks and troughs correspond to troughs on the ordinates.
Firstly, abscissas of the NMR experiment relaxation time distribution curve (i.e., the relaxation time T distribution curve) and the high-pressure mercury injection experiment pore throat radius distribution curve (i.e., the pore throat radius r distribution curve) are standardized to obtain a standard relaxation time distribution curve and a standard pore throat radius distribution curve with the same abscissa starting value and the same abscissa ending value on a logarithmic scale.
In order to make the abscissa value corresponding to the maximum ordinate value in the NMR experiment relaxation time distribution curve same as the abscissa value corresponding to the maximum ordinate value read from the high-pressure mercury injection experiment pore throat radius distribution curve, the following processing is carried out by the disclosure: the abscissa value corresponding to the maximum ordinate value on the standard relaxation time distribution curve is read and denoted as a, the abscissa value corresponding to the maximum ordinate value on the standard pore throat radius distribution curve is read and denoted as b, and a value of b/α is calculated. In response to the value of b/α>1, the abscissa of the standard relaxation time distribution curve is expanded by b/αunits to obtain a transformed relaxation time distribution curve; or in response to the value of b/α<1, the abscissa of the standard relaxation time distribution curve is shrunk by α/b units to obtain a transformed relaxation time distribution curve, to make an abscissa value corresponding to a maximum ordinate value in the transformed relaxation time distribution curve be same as the abscissa value corresponding to the maximum ordinate value in the standard pore throat radius distribution curve, as shown in
Then, straight lines with a number of N parallel to a y-axis passing through original experimental data points of the high-pressure mercury injection experiment are arbitrarily drawn in a distribution curve area in
Step 3, the pore throat radius and the real relaxation time value of each group are substituted to the formula (3) ρ=r/2T to obtain a ρ value of the intersection point of each group, as shown in Table 2.
Step 4, the ρ values are processed as follows, to obtain a final surface relaxation rate ρ′ of the small rock sample. Specifically, the step 4 includes the following five sub-steps.
It can be seen that the ρ values are distributed in an interval [19.42999858, 23.64183683].
d1=1.412261249, d2=0.667913214, d3=0.222139211, d4=0.057856186, d5=0.003093288, d6=0.066888701, d7=0.068562917, d8=0.307228922, d9=0.483261323, d10=0.419705284, d11=0.029251392, d12=0.222638266, d13=0.160560232, d14=0.090478066.
The above description is only the preferred embodiment of the disclosure and does not limit the disclosure in any form. Although the disclosure has been disclosed in the preferred embodiment, it is not intended to limit the disclosure. Those skilled in the art can use the disclosed technical content to make slight changes or modifications to equivalent embodiments without departing from the scope of the technical solution of the disclosure. Any simple modifications, equivalent changes, and modifications made to the above embodiments based on the technical essence of the disclosure without departing from the technical solution of the disclosure still belong to the scope of the technical solution of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202311470784.X | Nov 2023 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5289124 | Jerosch-Herold | Feb 1994 | A |
20160370492 | Chen | Dec 2016 | A1 |
20200249216 | Tian | Aug 2020 | A1 |