The field of this invention relates to multi-antenna wireless communication systems.
This invention relates generally to Multiple-Input Multiple-Output (MIMO) wireless communication networks or systems, and more particularly, a novel method to calibrate the Uplink (UL) and Downlink (DL) Channel State Information (CSI) as well as the apparatus and systems to implement this method.
Massive MIMO multi-user beamforming provides the potential to significantly increase the spectral efficiency and throughput by many folds through spatial multiplexing, offering linear capacity growth without the need of increasing the spectral bandwidth. However, when the number of Radio Frequency (RF) chains and antennas becomes large, the overhead in channel estimation to obtain the CSI is significant. Note that it is understood that an antenna or an array of antenna elements is associated with an RF chain, transmitting or receiving, thus, hereafter when the number of antennas is used, it should be understood to indicate the number of antennas and the associated RF chains where each antenna is assumed to be associated with an RF chain. For a Base Station (BS) with a large number of antennas, e.g., M=512 antennas, to simultaneously serve multiple receivers on the same time-frequency resource in the DL, e.g., K=32 User Equipments (UEs) and/or Small Cells (SCs) which depend on a BS to provide wireless backhaul, the BS transmitters must know the CSI of the M×K channel matrix, where M>>K. To be precise, it is the CSI between M BS antennas and the total number of antennas on the K UEs and/or SCs. To simplify discussion, without loss of generality, the total number of UE and/or SC antennas is assumed to be K.
In massive MIMO systems, it is not efficient to obtain the DL CSI directly by sending reference pilots in the DL and feeding them back because of the two following reasons. The first reason is that the large number of antennas on the BS would cause large system overhead for reference signals in the DL. In addition, a large number of bits is needed to quantize the CSI accurately, which would cause infeasible overload of the feedback channel in the UL. Fortunately, the reciprocal property of an over-the-air wireless channel, such as in a Time-Division Duplex (TDD) system or in a Frequency-Division Duplex (FDD) system using switching to create channel reciprocity as described in our patent application PCT/US2014/071752, can be employed to reduce the channel estimation overhead. In this method, each UE and/or SC sends the Sounding Reference Signal (SRS) or pilot signal with a unique sequence in the UL specified resource then the BS estimates the CSI between each pair of transmitting and receiving antennas at the baseband. In
The prior art to solve this problem can be classified into two types as listed below. The first one needs the UE to feed back some related information [1], e.g., the responses tkUE. With the feedback information and the measured parameters of the transmitters and receivers on the BS, the BS can complete the calibration. With this method, the BS could estimate the actual DL CSI up to the accuracy of the measured and feedback information. The second type only needs the BS to measure parameters of the transmitters and receivers on the BS to obtain a scaled DL CSI as in reference [2], i.e., hm,kDL,est=βkhm,kDL, where βk is a complex-valued scaling factor. The first type does not only increase the complexity and cost of a UE, but also causes unnecessary feedback overhead to the networks. The second type needs the BS to measure the responses between a reference antenna and all other antennas in both directions, either over the air or using circuits, which indicates that it can only be completed offline or during idle time considering the large number of antennas. However, as the temperatures of the transmitters or receivers change and components age, the responses tmBS and rmBS would change. Hence, the prior methods for calibrating the UL CSI and DL CSI are either too complex or not accurate enough. For these reasons, this invention provides a novel method and apparatus designed to overcome these shortcomings.
The aforementioned implementation of the invention as well as additional implementations would be more clearly understood as a result of the following detailed description of the various aspects of the invention when taken in conjunction with the drawings. Like reference numerals refer to corresponding parts throughout the several views of the drawings.
Reference may now be made to the drawings wherein like numerals refer to like parts throughout. Exemplary embodiments of the invention may now be described. The exemplary embodiments are provided to illustrate aspects of the invention and should not be construed as limiting the scope of the invention. When the exemplary embodiments are described with reference to block diagrams or flowcharts, each block may represent a method step or an apparatus element for performing the method step. Depending upon the implementation, the corresponding apparatus element may be configured in hardware, software, firmware or combinations thereof. Hereafter, a pilot signal may mean a signal transmitted by one antenna for the purpose of estimating the channel between the transmitting antenna and one or more receiving antennas. It may also be called a reference signal, a channel estimation signal, or a test signal.
For a wireless communication system where the BS has multiple antennas, the UE transmits the pilot signal or SRS in the UL so that the BS can estimate the channel between each pair of transmitting and receiving antennas. In one embodiment shown in
h
m,k
UL
=r
m
BS
h
m,k
air
t
k
UE
,m=1, . . . ,M,k=1, . . . ,K, (1)
where rmBS and tkUE denote the transfer functions of the mth BS receiver and the transmitter on the kth UE, while hm,kair denotes the radio over-the-air channel. Note that (1) can be extended directly to the case where each UE has multiple antennas, e.g., each antenna can be considered as a different UE. Hence, the assumption of single-antenna UEs in the following descriptions and embodiments does not affect the generality of the embodiments of this invention.
With the measured UL CSI hm,kUL, the DL CSI is written as
where βk=rkUE/tkUE is a complex-valued scaling factor, and hm,kDL,equ=hm,kULtmBS/rmBS. The DL CSI hm,kDL needs to be known with a scaling factor βk that depends only on the hardware parameters of the kth UE to calculate the DL beamforming or precoding matrix using the generally used Zero-Forcing (ZF) beamforming, conjugate beamforming, or other precoding methods. Since the channel vector between each UE antenna and all the BS antennas can be written as
h
k
DL=βkhkDL,equ, (3)
where hkDL=[h1,k, . . . , hM,kDL]T and hkDL,equ=[h1,kDL,equ, . . . , hM,kDL,equ]T, the MU-MIMO channel matrix can be denoted as HDL=[hkDL, . . . , hkDL], then the corresponding matrix HDL,equ is HDL,equ=[hkDL,equ, . . . , hkDL,equ]. Hence, the precoding matrix before being normalized is
W
DL,equ=[(HDL,equ)HHDL,equ]−1(HDL,equ)H=DWDL, (4)
where WDL=[(HDL)HHDL]−1(HDL)H, D=diag(β1, . . . , βK), and (HDL,equ)H=D(HDL)H. After normalizing the matrix WDL and WDL,equ by the transmitting power, they become the same matrix. Hence, the complex-valued scaling factor of each UE would not affect the accuracy of the DL beamforming or precoding matrix. Therefore, the BS only needs to obtain the factor or parameter αm=tmBS/rmBS to calculate the DL CSI.
Firstly, a reference signal s0 is transmitted by the mth transmitter, m=1, . . . , M, to measure the whole channel response of the mth transmitter to the mth receiver. Instead of transmitting s0 over the air through the antenna, the mth transmitter-receiver pair of the BS is connected directly so that the whole channel of the transmitter to the receiver can be estimated. However, in case that the power of the signal from the transmitter saturates the Low Noise Amplifier (LNA) or the Analog-to-Digital Converter (ADC) of the receiver due to the high gain of the Power Amplifier (PA) in the transmitter, the signal out of the transmitter needs to be first passed through an attenuator and then fed into the receiver in a TDD system. The signal out of the receiver is
y
m=μ0rmBStmBSs0, (5)
where μ0 denotes the attenuating factor, which is assumed to the same for all the M antennas. Since the transmitters and receivers of the M antennas are independent, this process can be carried out simultaneously.
For FDD systems, where the frequency band F1 is used for transmitting while the frequency band F2 is used for receiving, the signal out of the attenuator can be passed to a mixer with the frequency shift ΔF=F1−F2 first. After that, the signal out of the mixer is fed into the receiver. For simplicity, μ0 is used to denote the combined response of the attenuator and the mixer in FDD systems. Hence, (5) still can be applied to FDD systems.
Next, to estimate the response of the receiver, another reference signal s1, which satisfies s0=s12, is passed through an independent transmitter or any one of the M transmitters with the response tsBS and an attenuator in TDD systems, then the output signal tsBSs1 is fed into the M receivers. Hence, the output signals of the M receivers are
z
m=μ1rmBStmBSs1, (6)
where μ1 is the attenuating factor for the transmitter tsBS. Similarly to μ0, the factor μ1 can also be used to denote the combined response of the attenuator and the mixer in FDD systems. Hence, (6) is also applicable to FDD systems.
At the baseband, with the received signals ym and zm, the BS can estimate the parameter αm by
Hence, with the measured UL CSI hm,kUL, the DL CSI is calibrated as
where the relation between hm,kDL,Cal and the actual value hm,kDL is
or equivalently, hm,kDL=γkhm,kDL,Cal, where γk=βk(tsBSμ1)2/μ0. Similarly to βk, the factor γk is a complex-valued scaling factor which does not affect the performance of the DL beamforming or precoding as shown in [0019]. At first sight, it appears that the parameters tsBS, μ0, and μ1, can be pre-calibrated. However, the pre-calibrations are in fact not necessary because the effect of γk can be removed when conducting scaling.
One embodiment of an apparatus in a TDD system is illustrated in
In one embodiment of this patent in TDD systems, the measurements of ym and zm can be implemented in the guard period inserted at the DL-to-UL switch point of a wireless radio frame without affecting the normal DL transmission and the normal UL transmission. Hence, the method in this patent can track the response of transmitters and receivers timely and accurately so that it can reflect the temperature changes and the aging of components of the transmitters and receivers.
As one embodiment of this patent, apparatuses that implement this patent in FDD systems are illustrated in
Although the foregoing descriptions of the preferred embodiments of the present inventions have shown, described, or illustrated the fundamental novel features or principles of the inventions, it is understood that various omissions, substitutions, and changes in the form of the detail of the methods, elements or apparatuses as illustrated, as well as the uses thereof, may be made by those skilled in the art without departing from the spirit of the present inventions. Hence, the scope of the present inventions should not be limited to the foregoing descriptions. Rather, the principles of the inventions may be applied to a wide range of methods, systems, and apparatuses, to achieve the advantages described herein and to achieve other advantages or to satisfy other objectives as well.
This application claims the benefit of U.S. Provisional Application No. 62/190,981, filed on Jul. 10, 2015.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US16/41668 | 7/9/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62190981 | Jul 2015 | US |