The present invention relates to a method of a multiplier operation, and in particular relates to a method of operation of a low-error reduced-width multiplier.
Multiplier is one of the most common basic operations for digital signal processing. When performing a digital signal processing, in order to prevent data's bit width from overflow as the operation burden increases, therefore multiplication operation usually incorporates a reduced (or fixed) width characteristic so as to prevent the occurrence of the case of the numerical overflow during the process of the operation. Generally speaking, the reduced-width characteristic is commonly realized by employing a post-truncated multiplier, where the truncation operation is executed at the output of the multiplier in order to maintain the fixed width of bits. In contrast to the post-truncated multiplier, the direct-truncated multiplier only executes a partial product accumulation on the portions that are willing to preserve the output bit of the multiplication so as to reduce the computation complexity; but, however, usually it will result in a relatively large error.
For the direct-truncated fixed-width multiplier, the bit width of input/output is the same; and for the fixed-width multiplier, the error is compensated by adding a number. However, error compensation methods proposed in prior arts are only applicable for multipliers that utilize a single partial product generating approach, and most of them need to be accompanied with an acquisition of a large amount of simulation auxiliary compensated terms. Because of the lack of effective analysis method, it is difficult to further apply to the system-level analysis. Therefore, a direct-truncated multiplier of the known art only realizes the partial product accumulation corresponding to the remaining parts after truncation.
Figure depicts a circuit block diagram of a well-known multiplier, in which the bit width of an input data A is n1, and the bit width of an input data B is n2. The product of these two inputs has a bid width of (n1+n2) bits. This product must be truncated by the truncator (denoted by T) in order to keep the bit width at n (n£n1+n2) bits and therefore to prevent overflow.
Although there are many kinds of method being proposed in the literature to compensate for this error, however, they all are applicable for those multipliers which utilize a certain partial product generating method. Hereafter a survey of patent literature and non-patent literature relevant to the present invention will be given and analyzed as follows:
One of the objectives of the present invention is to provide an operational method of a low-error reduced-width multiplier for reducing computational complexity and compensating for truncation errors, which is applicable to different types of multipliers.
Another objective of the present invention is to provide a low-error reduced-width multiplier for reducing computational complexity and compensating for truncation errors.
Another objective of the present invention is to provide a method for carry estimation of truncated-width multiplier, comprising: (a) processing a n-bit Baugh-Wooly 2's complement multiplier and an input multiplication of A×B, where
to generate a first group of n partial products and a second group of n partial products; (b) associating each partial product of the first group with a most significant part (MSP) and associating each partial product of the second group with a least significant part (LSP); (c) dividing the least significant part (LSP) into two groups, a first least significant group of
Pi,j=ajbi, which contains a plurality of elements (Pi,j) of partial product of Pi,j=ajbi depending on input information (aj, bi), and a second least significant group containing n−1 bits; (d) truncating the second least significant group and using a compensating circuit to generate a estimated group of
in accordance with the input information implied in the first least significant group (β); (e) generating a carry estimation value of
where └x┘r is a round operation for rounding x to its nearest number, for the most significant part (MSP) in accordance with the first least significant group (β) and a estimated group (λ); and (f) using an adder circuit to accumulate the most significant part (MSP) and the carry estimation value.
Another objective of the present invention is provided with a method for carry estimation of truncated-width multiplier, comprising: (a) processing a Booth-encoded multiplier and reducing the number of row in partial product of an input of B={bn−1, bn−2, . . . , b0} where b−1 is equal to 0, into
(b) converting an input multiplication of A×B into an another multiplication of A×y, where y={y└n/2┘−1, y└n/2┘−2, . . . , y0}), to generate a first group of n partial products and a second group of n partial products; (c) associating each partial product of the first group with a most significant part (MSP) and associating each partial product of the second group with a least significant part (LSP); (d) dividing the least significant part (LSP) into two groups, a first least significant group of β={P0,n−1, P1,n−3, . . . , P└n/2┘−t,1}, which contains a plurality of elements (Pi,j) of partial product (Pij=ajyi) depending on input information (aj, yi) and a second least significant group containing n−1 bits; (e) truncating the second least significant group and using a compensating circuit to generate a carry estimation value of
where └x┘r is a round operation for rounding x to its nearest number, for the most significant part (MSP) in accordance with the input information implied in the first least significant group (β) and a estimated group (λ) and (f) using an adder circuit to accumulate the most significant part (MSP) and the carry estimation value in accordance with the first least significant group (β) and the estimated group (λ).
To achieve the above-mentioned objectives, in accordance with a first aspect of the present invention, there is provided an operational method of a low-error reduced-width multiplier for reducing computational complexity and compensating for truncation errors, comprising the following steps: dynamically generating a compensation term by using an input value of a multiplier; and an accumulating operation for which the part that is set to be the truncated part in the multiplier is omitted, while the compensation term is used for compensation, in order to reduce the width.
Furthermore, to achieve the above-mentioned objectives, in accordance with a second aspect of the present invention, there is provided a low-error reduced-width multiplier, in which the multiplier can reduce the width by an accumulating operation for which the part that is set to be the truncated part in the multiplier is omitted, while the compensation term dynamically generated by an input value is used for compensation.
Therefore, because of the utilization of an accumulating operation that use a dynamically generated compensation term to compensate for the part that is set to be a truncated part, the present invention is able to reduce the computational complexity and compensate for truncation errors, and is also applicable to different types of multipliers.
For the purpose that the said and other objectives, characteristics, and advantages of the present invention can be clearly seen, and be easily and obviously understood, preferred embodiments of the present invention are subsequently described by referring to the enclosing drawings, wherein:
In the following, preferred embodiments of the present invention are subsequently described by referring to the enclosing drawings.
The present invention discloses a dynamic generation of compensation and estimation analysis method that is applicable to different bit-width and different parts of products generating procedure of a multiplier. By utilizing this analysis method, it is able to further provide a system level analysis so as to provide a design choice while considering the design cost such as complexity and compensation accuracy. In accordance with the present invention, to achieve low complexity, a direct-truncated multiplier together with a compensating circuit for dynamically generating a quantity of compensation are adopted, where the mechanism for dynamically generating compensation still fulfills the low-error and low-complexity requirements. In connection with those requirements, distribute the correlations among the elements of the products, and observe parts of the partial products to calculate and arrange the state expectation value of the partial products to serve as a quantity of compensation needed in the dynamic compensation. Therefore, the analysis method in accordance with the present invention has a low complexity, and is applicable to the multipliers employing different kinds of partial products generating methods. Hence, under the condition that the statistical characteristics of the input signals to the multiplier are known, it offers much more accurate compensation, and can further provide a system-level truncation error analysis.
The present invention can be used in LAN\WAN, DVB-T/H, xDSL and high-speed low-power signal processors (such as the kernel processor of fast Fourier transform (FFT) or digital filter, equalizer).
and Pij=ajbi. Then the result of the multiplication can be represented as the following equation:
where [ ]r denotes round-off.
The multiplier 200 provided by the present invention is able to reduce the complexity by omitting the partial products accumulating operation of λ, while adding an estimation of λ to compensate for the error induced by this simplification. Because any two elements Pij1=ajbi1, Pij=ajbi that construct the partial product are both related to aj, and Pij1=aj1bi1, Pij=ajbi are related to bi, therefore, by observing the partial product accumulation value of the nth bit
and by substituting Pij, which constitute λ, with E[Pij|Pi,n−i−1,], or by substituting Pij, which constitute λ, with E[Pij|Pn−j−1,j], it is possible to estimate the value of λ that has been omitted to further compensate for this error. The quantity of compensation provided by the present invention is obtained by observing β, which corresponds to a quantity of compensation that changes dynamically in accordance with the input to an multiplier.
The multiplier provided by the present invention is capable of changing its omitting ratio of the partial product in accordance with the requested amount of error and complexity requirement of its applications or systems.
According to the present invention, a method for carry estimation of a truncated-width multiplier is provided and comprising: (a) processing a n-bit Baugh-Wooly 2's complement multiplier and an input multiplication of A×B, where
with aj, biε{0,1}), to generate a first group of n partial products and a second group of n partial products; (b) associating each partial product of the first group with a most significant part (MSP) and associating each partial product of the second group with a least significant part (LSP); (c) dividing the least significant part (LSP) into two groups, a first least significant group of
Pi,j=ajbi, which contains a plurality of elements Pi,j of partial product Pi,j=ajbi depending on input information aj, bi, and a second least significant group containing n−1 bits; (d) truncating the second least significant group and using a compensating circuit to generate a estimated group of
in accordance with the input information implied in the first least significant group β; (e) generating a carry estimation value of
where └x┘r is a round operation for rounding x to its nearest number, for the most significant part (MSP) in accordance with the first least significant group β and a estimated group λ; and (f) using an adder circuit to accumulate the most significant part (MSP) and the carry estimation value.
According to abovementioned method and referring to
to the second cells 84 and the third cell 82. A total number of the first cell, the second cells and the third cell are equal to n, and the second cells 84 are connected between the first cell 81 and the third cell 84. The carry estimation value σ is estimated as
when conditional expectation values are E[Pij|aj=0]=0 and
where Pij is generated from aj×bi and estimated as
Alternatively, referring to
and the carry estimation value σ is estimated as
when conditional expectation values of any partial product conditioned on αj are
where αj=Pn−1−j,j,
and a conditional expectation Pij is determined as
Furthermore, the present invention is provided with an another method for carry estimation of a truncated-width multiplier, the method comprising: (a) processing a Booth-encoded multiplier and reducing the number of row in partial product of an input of B={bn−1, bn−2, . . . , b0}, where b−1 is equal to 0, into
(b) converting an input multiplication of A×B into an another multiplication of A×y, where y={y└n/2┘−1, y└n/2┘−2, . . . , y0}, to generate a first group of n partial products and a second group of n partial products; (c) associating each partial product of the first group with a most significant part (MSP) and associating each partial product of the second group with a least significant part (LSP); (d) dividing the least significant part (LSP) into two groups, a first least significant group of β={P0,n−1, P1,n−3, . . . , P└n/2┘−1,1}, which contains a plurality of elements Pi,j of partial product Pij=ajyi depending on input information (aj, yi) and a second least significant group containing n−1 bits; (e) truncating the second least significant group and using a compensating circuit to generate a carry estimation value of
where └x┘, is a round operation for rounding x to its nearest number, for the most significant part (MSP) in accordance with the input information implied in the first least significant group β and a estimated group λ; and (f) using an adder circuit to accumulate the most significant part (MSP) and the carry estimation value in accordance with the first least significant group β and the estimated group λ.
In this preferred embodiment, the compensating circuit 111 includes: a plurality of AND logical gates for receiving an input information of the first least significant group β and outputting the estimated group λ composed of
and n/4 full adders for receiving the information of the first least significant group β and the estimated group λ, and outputting the carry estimation value to the Booth-encoded multiplier, where Pij is estimated by conditional expectations of E[Pij|βi], where
and ni in Booth encoding equals to 1 only when yi<0
In this preferred embodiment, the compensating circuit 121 includes n/4 full adders for receiving the input information of the first least significant group β and the estimated group λ composed of
and outputting the carry estimation value to the Booth-encoded multiplier, where Pij is related to αj and estimated by conditional expectations of E[Pij|αj=ajyi], where
and ni in Booth encoding equals to 1 only when yi<0.
To sum up, from the previous description, the low-error reduced-width multiplier and it operation method provided in the present invention, because of the utilization of an accumulating operation that use a dynamically generated compensation term to compensate for the part that is set to be a truncated part, is able to reduce the computational complexity and compensate for truncation errors, and therefore is also applicable to different types of multipliers having different bit widths and using different partial products generating methods.
Although the present invention is disclosed in a plurality of preferred embodiments described above, the inventive idea should not be limited only to those. It will be understood by those skilled in the art that various other changes in the form and details may be made without departing from the spirit and scope of the present invention. It is to be understood that various changes may be made in adapting to different embodiments without departing from the broader concepts disclosed herein and comprehended by the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
95149774 A | Dec 2006 | TW | national |
This is a continuation-in-part of pending application Ser. No. 11/787,716, filed Apr. 17, 2007.
Number | Name | Date | Kind |
---|---|---|---|
5694349 | Pal | Dec 1997 | A |
6122654 | Zhou et al. | Sep 2000 | A |
6363084 | Dejonghe | Mar 2002 | B1 |
6978426 | Parhi et al. | Dec 2005 | B2 |
7080115 | Parhi et al. | Jul 2006 | B2 |
20020032713 | Jou et al. | Mar 2002 | A1 |
20030220956 | Parhi et al. | Nov 2003 | A1 |
20050144217 | Parhi et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
396321 | Jul 2000 | TW |
484092 | Apr 2002 | TW |
Entry |
---|
L. D. Van, S. S. Wang, and W. S. Feng, “Design of the lower-error fixed-width multiplier and its application”, IEEE Trans. Circuits Syst. II, vol. 47, pp. 1112-1118, Oct. 2000. |
L. D. Van and C. C. Yang, “Generalized low-error area-efficient fixed width multipliers,” IEEE Trans. Circuits Syst. I, vol. 52, No. 8, pp. 1608-1619, Aug. 2005. |
H.-A. Huang, Y.-C. Liao and H.-C. Chang, “A self-compensation fixed-width booth multiplier and its 128-point FFT applications,” Proc. IEEE Int. Symp. Circuits Syst., pp. 3538-3541, 2006. |
Y.-C. Liao, H.-C. Chang and C.-W. Liu, “Carry estimation for two's complement fixed-width multipliers,” Proc. IEEE Workshop Signal Processing Systems, pp. 345-350, 2006. |
K. J. Cho and J. G. Chung, “Low-Error Fixed-Width Two's Complement Squarer Design Using Booth-Folding Technique,” IET Comput. Digit. Tech., vol. 1, No. 4, pp. 414-422, Jul. 2007. |
S. J. Jou and H. H.Wang, “Fixed-width multiplier for DSP application,” IEEE Int. Symp. Computer Design, pp. 318-322, Sep. 2000. |
S. J. Jou, M. H. Tsai, and Y. L. Tsao, “Low-error reduced-width multipliers for DSP applications,” IEEE Trans. Circuits Syst. I, vol. 50, pp. 1470-1474, Nov. 2003. |
J. M. Jou, S. R. Kuang, and R. D. Chen, “Design of low-error fixed-width multiplier for DSP applications,” IEEE Trans. Circuits Syst. II, vol. CAS-46, No. 6, pp. 836-842, Jun. 1999. |
Y.C. Lim, “Single-Precision Multiplier with Reduced Circuit Complexity for Signal Processing Applications,” IEEE Trans. on Computers, vol. 41, pp. 1333-1336, Oct. 1992. |
M.J. Schulte and Earl E. Swartzlander, Jr., “Truncated Multiplication with Correction Constant,” in Workshop on VLSI Signal Processing, Oct. 1993, pp. 388-396. |
S.S. Kidambi, F. El-Guibaly, and A. Antoniou, “Area-Efficient Multipliers for Digital Signal Processing Applications,” IEEE Trans. on Circuits and Syst. II, vol. 43, No. 2, pp. 90-95, Feb. 1996. |
T.B. Juang and S.F. Hsiao, “Low-Error Carry-Free Fixed-Width Multipliers with Low-Cost Compensation Circuits,” IEEE Trans. on Circuits and Syst. II, vol. 52, No. 6, pp. 299-303, Jun. 2005. |
L.D. Van and C.C. Yang, “Generalized Low-Error Area-Efficient Fixed-Width Multipliers,” IEEE Trans. on Circuits and Syst.. I, vol. 52, No. 8,pp. 1608-1619,Aug. 2005. |
V.G. Oklobdzija, D. Villeger, and T. Soulas, “An integrated multiplier for complex numbers”, Journal of VSLI Signal Processing, No. 7, pp. 213-222, 1994. |
Number | Date | Country | |
---|---|---|---|
20110185000 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11787716 | Apr 2007 | US |
Child | 12932530 | US |