The present invention relates to a method for casting objects, and more particularly, a method for casting railroad wheels using an improved hub core assembly.
The preferred method for manufacturing cast steel railroad wheels is a bottom pressure casting foundry operation wherein molten steel under pressure is forced upwardly into a machined graphite mold. The mold is thereby filled with molten steel from the bottom upwardly. This bottom pressure casting operation eliminates many of the concerns associated with traditional top pouring of molten steel into molds in foundry operations such as splashing and insufficient filling.
In the bottom pressure casting of railroad wheels, the top half or cope of the mold is usually a graphite block wherein the top portion or front face of the object beign cast is machined. The bottom half or drag of the mold is also usually a graphite block wherein the bottom portion or rear face of the object being cast is machined. A radially central opening is present in the cope section of the mold, and a complimentary radially central opening is present in the drag of the mold. When the cope section and drag section are combined to form a complete mold, such complete mold is positioned at a pouring station wherein molten steel is forced upwardly into the cavity in the mold to form the railroad wheel. As set forth in detail in U.S. Pat. No. 5,919,392, a ladle of molten steel is placed within a holding tank, and the tank is covered in a manner to seal the ladle in the holding tank. A pouring tube extends downwardly into the molten steel in the ladle and also extends upwardly to the top of the structure at the pouring station. Such pouring tube is typically comprised of a ceramic material as it must withstand the temperatures of the molten steel.
A stopper pipe is positioned in the central opening in the cope and drag sections of each graphite mold. Such stopper pipe includes a metal, usually steel, pipe section and an end stopper head, which is usually comprised of a refractory material such as a resin set sand. Upon the pressurization of the holding tank, the molten steel is forced upwardly through the pouring tube and into the mold cavity to form the railroad wheel. A plurality of risers are usually provided in the cope section of the mold such that additional molten metal can be held as necessary to downwardly fill into the mold during cooling and solidification of the railroad wheel just after pouring. Upon filling of the mold cavity and risers, the pressure is decreased to stop the metal pouring while simultaneously the stopper pipe is extended downwardly to have the end stopper head engage and seal the opening at the bottom of the mold cavity in the drag section. The graphite mold is then moved from the pouring station allowing sufficient time for the steel to solidify before the cope and drag sections are separated.
It is understood that a separate stopper pipe is required for each graphite mold, since the molten metal of the object being cast, usually a railroad wheel, comes in contact with the metal section of the stopper pipe, thereby engaging and melting it. This area of the object being cast, typically a railroad wheel, is subsequently removed to form the hub section of the railroad wheel.
It is desirable to eliminate the use of a separate stopper pipe for each object being cast in the graphite mold.
Accordingly, it is an object of the present invention to provide an improved hub core assembly for use in a bottom pressure casting operation.
It is another object of the present invention to provide an improved method for casting railroad wheels utilizing a bottom pressure casting operation with a machined graphite mold wherein a reusable hub core assembly is utilized.
The graphite mold used in the bottom pressure casting of an object such as a steel railroad wheel is comprised of a top section or cope and a bottom section or drag. The cavity to form the object being cast is typically machined into the cope section and drag section. When assembled, the cope section and drag section provide a mold ready to accept molten steel through an in gate located at the bottom center of an opening in the drag section. The top of the cope section usually includes a plurality of risers to hold molten metal for an extended period to allow the sufficient filling of the mold during cooling and solidification of the railroad wheel just after pouring.
A hub core assembly is provided in the opening of the axially central located opening in the cope section and drag section of the mold. Such hub core assembly includes a metal, usually steel, stopper pipe shaft section. Such pipe shaft section is usually a cylindrical steel pipe. A hub core is attached near the bottom end of the pipe shaft. The pipe shaft passes through the opening in the cope section and downwardly toward the bottom of the object cavity in the drag section of the mold. Such hub core is of a diameter greater than the in gate extending upwardly through the drag section of the mold. It is usual for the hub core to be cylindrical in form, as it forms the ultimate hub opening in the axial center of the railway wheel. Such hub core is usually comprised of an improved or specialty refractory material, such as an improved sand or other refractory coated with a selected resin.
The bottom of the hub core is usually of a generally cylindrical configuration and of a diameter greater than the diameter of the in gate extending upwardly through the drag section of the mold. The hub core bottom is shaped and designed to fit against the centrally located in gate cavity in the drag section of the mold, such that a seal can be formed with the downward movement of the hub core assembly by positioning the hub core against the in gate at the bottom of the cavity in the drag section of the mold. Such movement of the hub core downwardly to seal the in gate is usually simultaneously performed with the cessation of pressurization of the molten steel that is forced upwardly through the in gate and into the mold cavity.
The use of the hub core with the pipe shaft allows the hub core assembly to be reused for multiple pouring operations. The molten steel would not contact the metal pipe shaft section but rather would only contact the hub core, which is comprised of a refractory material. Such reuse of the hub core assembly results in a cost saving as compared to a one time use of the prior art stopper pipe assembly.
An additional advantage of the use of the improved hub core assembly is that the hub core itself is of a radius greater than the stopper pipe. Accordingly, less molten steel is needed to fill the cavity in the graphite mold. As this central portion of railroad wheel casting is subsequently removed for formation of the hub to receive the railroad axle, it is advantageous to use less steel to initially form the railroad wheel hub area as such excess steel ends up being removed in subsequent finishing operations.
Another advantage is that the hub core itself usually includes a hollow central portion. Accordingly, molten steel can enter the central portion through openings in the wall of the hub core to form a hub core riser of molten steel.
In the drawings,
Referring now to
In an actual pouring operation, pressurized air or an inert gas is injected under pressure into chamber 22 thereby forcing molten metal upwardly through pouring tube 24 into drag section 50 of the mold. Cope section 52 is placed on top of drag section 50 to provide a complete mold assembly. In the bottom pressure casting of steel railway wheels, drag section 50 and cope section 52 are usually comprised of graphite material, with the wheel cavity machined therein.
Upon the filling of the wheel cavity with molten steel, the pressure is reduced in chamber 22 and stopper head 58, at the end of stopper pipe shaft 54, is lowered downwardly into an engaging relationship with a complimentary opening 59 at the top of drag section 50. Such downward movement of stopper head 58 acts to seal the molten steel in the machined cavity.
Referring now to
Referring now to
Hub core main section 57 can also be comprised of an improved refractory material set using a resin or other setting agent and catalyst.
Referring now to
Rear fan 160 of a railway wheel is machined to form a cavity in drag mold section 150. Front face of 62 of a railway wheel is machined to form a cavity in cope mold section 152. Molten steel 170 enters the cavity through opening 166 in drag mold section 150.
A plurality of risers 164 are machined into cope mold section 152 to hold liquid steel for a period of time to be able to supply molten steel 170 downwardly into the cavity after pouring. Such supply of molten steel 170 assures complete filling of the cavity and proper porosity of the steel in the railway wheel after solidification. Such risers are lined with a refractory such as sand to assure the steel in the riser remains liquid for a long enough period of time to supply the cavity with molten steel during cooling and solidification of the railway wheel.
Hub area 172 of the railway wheel also requires a supply of liquid steel to assure complete filling of the hub of the railway wheel. Hub core 56, as previously described, is present in mold hub area 172 for a few reasons. Hub core 56 is of a diameter and volume such that less molten steel is required to fill hub area 172 than if the prior art hub stopper is. This savings of steel can amount to 70 pounds of steel for a railway wheel that weighs about 1180 pounds.
From
Number | Name | Date | Kind |
---|---|---|---|
1908741 | Fahrenwald | May 1933 | A |
2838816 | Strom | Jun 1958 | A |
2839802 | Bean et al. | Jun 1958 | A |
2990592 | Hursen | Jul 1961 | A |
Number | Date | Country | |
---|---|---|---|
20050241794 A1 | Nov 2005 | US |