Method for catheter placement

Information

  • Patent Grant
  • 7757695
  • Patent Number
    7,757,695
  • Date Filed
    Friday, September 7, 2007
    17 years ago
  • Date Issued
    Tuesday, July 20, 2010
    14 years ago
Abstract
Light from a small laser diode is inserted in a distal end of a catheter and passed through an optical fiber that is either included in the lumen or incorporated into the wall of an invasive catheter tube during manufacture. The light is selected to be of a wavelength that is minimally absorbed by tissue, preferably in the range from about 620 nm to 1100 nm. 780 nm is preferably used as this is where the tissue absorption is near a minimum. The light passes out the end of the fiber (at the proximal end of the catheter) and through the tissue to the outside of the patient's skin where it is measured. The light pattern is observed by night vision goggles that filter out other frequencies of light. The detected light permits location of the end of the fiber, the positional accuracy depending on the thickness of tissue between the fiber tip and the exterior of the body. The method is highly accurate for small children and for catheters within a few centimeters of the skin surface of adults.
Description
FIELD OF THE INVENTION

The present invention relates to an optical guidance system and a method for insertion of endotracheal tubing, nasogastric tubing, feeding tubing, epidural catheters, central venous catheters, peripherally inserted central venous catheters, chest tubes pleural catheters, and similar invasive catheters and tubes.


DESCRIPTION OF THE PRIOR ART

Determining the location of the end of a catheter inserted into patients for the purpose of providing nutrients or medications to specific locations within the body has been difficult. Currently, catheter placement is either done without visual guidance or, if the placement is particularly critical, it is done by x-ray, which can accurately determine the location of radio-opaque plastic materials used in making the tubing. However, multiple x-rays are often necessary. The necessity for multiple x-rays in order to locate the end of the inserted tubing is undesirable. An optical system that is convenient and easy to use and yet allows the end of the tubing to be quite accurately located without the use of x-rays is desired. Preferably, the position of the catheter tip may be directly observed during the insertion process and the position of the tip checked at any time thereafter.


Prior art catheter light delivery devices are known (e.g., Woodward et al.; U.S. Pat. No. 5,947,958) that provide illumination of internal organs of a patient after insertion through, for example, the peritoneal wall. This illumination is to provide light for either imaging of the tissue surface or for delivering the light used in photodynamic therapy. Such devices are not used for catheter placement.


Other light guides, such as Fontenot; U.S. Pat. No. 5,423,321, have multiple light guiding fibers of different lengths that are inserted into internal organs or vessels during surgery. In the case of balloon catheters, such light guides are used to place the balloon catheter in positions where inflation of the balloon will occlude the vessel if that should become necessary. The light guide is an independent entity and observation is through the vessel wall such that visible light is sufficient, although near infra red light is indicated as decreasing the intensity of light that is required. A detection system is also described for determining when the surgical cutting tool approaches the vessel.


Vander Salm et al; U.S. Pat. No. 5,906,579 and Duhaylongsod et al; U.S. Pat. No. 6,113,588 similarly describe methods for visualizing balloon catheters through the vessel wall under surgical conditions. In these devices, the optical fiber is an independent entity and is preferably inserted through one lumen of a multilumen catheter. The disclosed devices are specifically disclosed for use in cardiothoracic surgery.


Such prior art light guides do not use a single fiber that is built into the structure of catheters with multiple different functions, are not directed primarily to localizing the tip of an inserted catheter during non-surgical procedures for endotracheal tubing, nasogastric tubing, feeding tubing, epidural catheterization, central venous catheterization, peripherally inserted central venous catheterizations, chest tubes pleural catheterization, or with similar invasive catheters and tubes, and such prior art devices do not use only near infrared light since the vessels are not surgically exposed and visible light (blue through orange) provides insufficient penetration of the tissue. Moreover, such prior art devices are relatively expensive and the optical components may require difficult FDA scrutiny since they may contact the patient. The present invention addresses these limitations in the prior art.


SUMMARY OF THE INVENTION

Light from a small laser diode is passed through an optical fiber that is either included in the lumen or incorporated into the wall of an invasive catheter tube during manufacture. The light is selected to be of a wavelength that is minimally absorbed by tissue, preferably in the range from about 620 nm to 1100 nm. In a preferred embodiment, 780 nm is used as this is where the tissue absorption is near a minimum. The light passes out the end of the fiber (at the distal end of the catheter) and through the tissue to the outside where it is measured. The light pattern is observed by night vision goggles that filter out light in other frequency ranges. The detected light allows location of the end of the fiber, the positional accuracy depending on the thickness of tissue between the fiber tip and the exterior of the body. The method is highly accurate for small children and for catheters near the skin surface of adults but may not be applicable to catheters placed within the body cavity of some large adults.





BRIEF DESCRIPTION OF THE DRAWINGS

An optical guidance system and method for insertion of endotracheal tubing, nasogastric tubing, feeding tubing, epidural catheters, central venous catheters, peripherally inserted central venous catheters, chest tubes pleural catheters, and similar invasive catheters and tubes in accordance with the invention is farther described below with reference to the accompanying drawings, in which:



FIG. 1 illustrates a cross-section of a catheter with an integral optical fiber that is used in accordance with the invention to locate the tip of the inserted catheter.



FIG. 2 illustrates a side view of the catheter of FIG. 1.



FIG. 3 illustrates the catheter of FIG. 1 inserted into the body of a patient and the detection of the light from the tip of the catheter at the nearest spot of the patient's skin in accordance with the method of the invention.





DETAILED DESCRIPTION OF THE INVENTION

An optical guidance system in accordance with the invention includes a laser diode having a wavelength in the range of 620 nm to 1100 nm, preferably a 780 nm wavelength with an emission less than 2 nm wide and less than 5 mW in power that/is carried through a 150 micron (or less) core glass optical fiber to an “ST” optical connector at a distal end. As shown in FIG. 1, the glass optical fiber 10 is embedded in (i.e., partially or completely surrounded by) the wall 20 of a catheter 30 having a catheter lumen 40. The optical fiber 10 runs the entire length of the catheter 30, and the unterminated end of the optical fiber 10 at the distal end 50 of the catheter 30 is adapted to be inserted into the patient as shown in FIG. 2. The proximal end 60 is terminated with an ST optical connector (not shown) appropriate for connecting the optical fiber 10 with the laser diode (not shown). Conversely, the optical fiber 10 may be inserted into lumen 40 of the catheter 30 at its proximal end 60 and fed to the distal tip 50 of the catheter 30 and held in place so that light escapes from the distal end 50 once the catheter 30 is inserted into the patient.


The operator uses a detection system such as near infrared “night vision” goggles 70 watch the progress of the catheter 30 from the site of entry to the chosen location. The distal end 50 of the catheter 30 is treated as a single light source and the diffuse rays from this light source are detected. A narrow pass <10 nm at half height is preferred, although wider bandpass filters could be used) interference filter 80 with a center wavelength of 780 nm (for a light source of 780 nm) is used to cover the detector surface of the goggles 70. In general, contribution of other ambient lighting increases with increasing width of the optical filter bandpass. The value of less than 10 nm is selected to allow some variation in the laser diode wavelength and yet to minimize the amount o flight other than that from the laser diode that passes through to the detector of the goggles 70. Of course, if other wavelength light were used, an appropriate interference filter centered about the other wavelength would be used.



FIG. 3 illustrates the catheter 30 of FIGS. 1 and 2 inserted into the body of a patient vie a nasogastric catheter 30 and the detection of the light from the tip 50 of the catheter 30 at the nearest spot of the patient's skin in accordance with the method of the invention. In the example illustrated in FIG. 3, night vision goggles 70 with an appropriate interference filter 80 thereon allow the operator to see the infrared light through the skin outside of the patient's stomach.


Those skilled in the art will appreciate that other designs of the optical guidance system for catheters in accordance with the invention could be constructed using different light sources and light detectors. While 780 nm light is suitable since tissue absorption is near a minimum at that wavelength, it would be possible, for example, to use an LED as a light source as long as the light provided was of appropriate wavelength and energy. In this case, a wider bandpass filter may be required on the detector (an LED light output is broader than that of the laser diode). Similarly, different detectors could be used, including photodiodes, photomultipliers, avalanche photodiodes, and microchannel plates. When photodiodes or other single site detectors are used they could be moved over the surface of the tissue to detect the maximum in the specific light emitted from the optical fiber. The sensitivity of the measurement could be maximized by modulating the light at a specific frequency (such as 1000 Hz) and detecting only the photosignal of that frequency.


Another modification that would allow the operator to detect those cases in which the catheter had “doubled back” inappropriately would be to incorporate two optical fibers, one terminated about 5 centimeters before the tip and the other at the tip. The two could be distinguished by differences in modulation frequency and/or wavelengths of light.


In one variation of the detection system, the night vision goggle 70 could include a sensitive microchannel plate imager in a mini-display directly in front of one eye of the operator. This would allow the operator to look at either the patient or at the display as desired.


Although exemplary implementations of the invention have been described in detail above, those skilled in the art will readily appreciate that many additional modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the invention. Any such modifications are intended to be included within the scope of this invention as defined by the following exemplary claims.

Claims
  • 1. A method of determining the location of a distal end of an optically-guided catheter inserted into a body cavity or lumen of a patient, the method comprising the steps of: inserting the optically-guided catheter into the body cavity or lumen of the patient, wherein an optical fiber extends to the distal end of the catheter;providing light into the optical fiber in the catheter, whereby the emitted light passes through the optical fiber to the distal end of the catheter when the catheter is inserted in the body cavity or lumen of the patient;emitting light from a light-emitting region at the distal end of the optical fiber in the catheter;non-invasively detecting light emitted from the light-emitting region on the catheter within the patient; anddetermining location of the light-emitting region at the distal end of the catheter from the non-invasively detected light, thereby determining placement of the catheter within the body cavity or lumen of the patient based upon the location of the light-emitting region.
  • 2. The method as in claim 1, wherein light is provided in a wavelength range of 620 nm to 1100 nm.
  • 3. The method as in claim 2, wherein light is provided at a wavelength of approximately 780 nm.
  • 4. The method as in claim 1, wherein the non-invasively detecting step further comprises viewing a patient's body with a night vision light detector having an interference filter on its detection surface.
  • 5. The method as in claim 4, wherein the light provided to the optical fiber is narrowband light and the determining step includes the step of filtering emitted light through the interference filter so as to effectively block light in wavelength ranges outside of a wavelength range of the narrowband light provided to the optical fiber.
  • 6. The method as in claim 4, wherein the non-invasively detecting step further comprises the step of providing a mini-display in front of one eye of an operator using a night vision light detector.
  • 7. The method as in claim 1, wherein the non-invasively detecting step comprises the step of detecting light emitted from the optically guided catheter using at least one photodiode, photomultiplier, avalanche photodiode, and microchannel plate, or combination thereof.
  • 8. The method as in claim 1, wherein the optical fiber is embedded into a wall of the catheter.
  • 9. The method as in claim 1, wherein the optical fiber is inserted into a lumen of the catheter so as to extend to the distal end of the catheter and holding the optical fiber in place therein.
  • 10. The method as in claim 1, wherein the optically-guided catheter is selected from the group consisting of endotracheal tubing, nasogastric tubing, feeding tubing, an epidural catheter, a central venous catheter, a peripherally inserted central venous catheter, and a chest tube pleural catheter.
  • 11. The method as in claim 1, further comprising the step of supplying at least one nutrient or medication through the catheter after determining the location of the light-emitting region thereof.
  • 12. The method as in claim 1, wherein the light is provided to the optical fiber in the catheter from a laser diode.
  • 13. The method as in claim 1, wherein the light is provided to the optical fiber in the catheter from a light emitting diode (LED).
  • 14. The method as in claim 1, wherein the non-invasive detection step is performed with a detector selected from the group consisting of a photodiode, a photmultiplier, an avalanche photodiode, and a microchannel plate.
  • 15. The method as in claim 1, wherein the non-invasive detection step comprises moving a detector over the external surface of tissue.
  • 16. A method for positioning a catheter relative to a body cavity or lumen of a patient, the method comprising the steps of: providing a catheter that defines a longitudinal axis and a distal end, the catheter including a first optical fiber extending along the longitudinal axis of the catheter to the distal end;inserting the catheter into the body cavity or lumen of the patient;providing light into the first optical fiber, whereby the emitted light passes through the first optical fiber to the distal end of the catheter and is emitted therefrom; andguiding the distal end of the catheter to a desired location in the patient through non-invasive detection of light emitted from the first optical fiber at the distal end of the catheter.
  • 17. The method as in claim 16, wherein the catheter includes a second optical fiber positioned therewithin.
  • 18. The method as in claim 17, wherein the first optical fiber and the second optical fiber terminate at different points relative to the distal end of the catheter.
  • 19. The method as in claim 17, wherein the first optical fiber and the second optical fiber are provided with light of differing modulation frequency.
  • 20. The method as in claim 17, wherein the first optical fiber and the second optical fiber are provided with light of differing wavelength.
  • 21. The method as in claim 16, wherein the catheter is inserted into the body cavity or lumen near the skin surface of the patient.
  • 22. The method as in claim 16, wherein light is provided to the first optical fiber in a wavelength range of 620 nm to 1100 nm.
  • 23. The method as in claim 16, wherein the first optical fiber is embedded into a wall of the catheter.
  • 24. The method as in claim 16, wherein the first optical fiber is inserted into a lumen of the catheter so as to extend to the distal end of the catheter.
  • 25. The method as in claim 16, wherein the catheter is selected from the group consisting of endotracheal tubing, nasogastric tubing, feeding tubing, an epidural catheter, a central venous catheter, a peripherally inserted central venous catheter, and a chest tube pleural catheter.
  • 26. The method as in claim 16, further comprising the step of supplying at least one nutrient or medication through the catheter after guiding the distal end of the catheter to a desired location.
  • 27. The method as in claim 16, wherein the light is provided to the first optical fiber from a laser diode.
  • 28. The method as in claim 16, wherein the light is provided to the first optical fiber from a light emitting diode (LED).
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the National Stage of International Application No. PCT/US02/19314, filed Jun. 19, 2002, which claims the benefit of U.S. Provisional Application No. 60/299,299, filed Jun. 19, 2001.

US Referenced Citations (89)
Number Name Date Kind
4096862 DeLuca Jun 1978 A
4248214 Hannah et al. Feb 1981 A
4444185 Shugar Apr 1984 A
4567882 Heller Feb 1986 A
4772093 Abele et al. Sep 1988 A
4782819 Adair Nov 1988 A
4784128 Scheuermann Nov 1988 A
4821731 Martinelli et al. Apr 1989 A
4875897 Lee Oct 1989 A
4898175 Noguchi Feb 1990 A
4945895 Takai et al. Aug 1990 A
5005180 Edelman et al. Apr 1991 A
5005573 Buchanan Apr 1991 A
5005592 Cartmell Apr 1991 A
5007408 Ieoka Apr 1991 A
5019040 Itaoka et al. May 1991 A
5125404 Kittrell et al. Jun 1992 A
5131380 Heller et al. Jul 1992 A
5196004 Sinofsky Mar 1993 A
5197470 Helfer et al. Mar 1993 A
5263928 Trauthen et al. Nov 1993 A
5268570 Kim Dec 1993 A
5290275 Kittrell et al. Mar 1994 A
5370640 Kolff Dec 1994 A
5415654 Daikuzono May 1995 A
5423311 Snoke et al. Jun 1995 A
5423321 Fontenot Jun 1995 A
5448582 Lawandy Sep 1995 A
5453086 Weber Sep 1995 A
5456680 Taylor et al. Oct 1995 A
5496305 Kittrell et al. Mar 1996 A
5514128 Hillsman et al. May 1996 A
5517997 Fontenot May 1996 A
5540691 Elstrom et al. Jul 1996 A
5643251 Hillsman et al. Jul 1997 A
5665052 Bullard Sep 1997 A
5728092 Doiron et al. Mar 1998 A
5733277 Pallarito Mar 1998 A
5879306 Fontenot et al. Mar 1999 A
5906579 Vander Salm et al. May 1999 A
5910816 Fontenot et al. Jun 1999 A
5947958 Woodward et al. Sep 1999 A
5995208 Sarge et al. Nov 1999 A
6048349 Winston et al. Apr 2000 A
6061587 Kucharczyk et al. May 2000 A
6063093 Winston et al. May 2000 A
6081741 Hollis Jun 2000 A
6113588 Duhaylongsod et al. Sep 2000 A
6134003 Tearney et al. Oct 2000 A
6146409 Overholt et al. Nov 2000 A
6159203 Sinofsky Dec 2000 A
6230046 Crane et al. May 2001 B1
6236879 Konings May 2001 B1
6246901 Benaron Jun 2001 B1
6332089 Acker et al. Dec 2001 B1
6366726 Wach et al. Apr 2002 B1
6445943 Ferre et al. Sep 2002 B1
6463313 Winston et al. Oct 2002 B1
6475226 Belef et al. Nov 2002 B1
6516216 Fontenot et al. Feb 2003 B1
6519485 Wiesmann et al. Feb 2003 B2
6572609 Farr et al. Jun 2003 B1
6597941 Fontenot et al. Jul 2003 B2
6685666 Fontenot Feb 2004 B1
6852109 Winston et al. Feb 2005 B2
6887229 Kurth May 2005 B1
6902545 Bertolero et al. Jun 2005 B2
7273056 Wilson et al. Sep 2007 B2
7276093 Wilson Oct 2007 B1
20020038120 Duhaylongsod et al. Mar 2002 A1
20020052597 Duhaylongsod et al. May 2002 A1
20020115922 Waner et al. Aug 2002 A1
20020123696 Kokate et al. Sep 2002 A1
20020161290 Chance Oct 2002 A1
20030092995 Thompson May 2003 A1
20030130575 Desai Jul 2003 A1
20030187360 Waner et al. Oct 2003 A1
20030191379 Benaron et al. Oct 2003 A1
20030191398 Motz et al. Oct 2003 A1
20040019280 Waner et al. Jan 2004 A1
20040064021 Pfeiffer Apr 2004 A1
20040064022 Korn Apr 2004 A1
20040068178 Govari Apr 2004 A1
20040073120 Motz et al. Apr 2004 A1
20040093044 Rychnovsky et al. May 2004 A1
20040236231 Knighton et al. Nov 2004 A1
20050165462 Bays et al. Jul 2005 A1
20050240147 Makower et al. Oct 2005 A1
20060036164 Wilson Feb 2006 A1
Related Publications (1)
Number Date Country
20080027408 A1 Jan 2008 US
Provisional Applications (1)
Number Date Country
60299299 Jun 2001 US
Continuations (1)
Number Date Country
Parent 10482190 US
Child 11851847 US