METHOD FOR CHANNEL DECOUPLING OF WHOLE-ROLLER FLATNESS METER FOR COLD-ROLLED STRIP

Information

  • Patent Application
  • 20200338609
  • Publication Number
    20200338609
  • Date Filed
    April 27, 2020
    4 years ago
  • Date Published
    October 29, 2020
    4 years ago
  • Inventors
    • Liu; Hongmin
    • Yu; Huaxin
    • Wang; Dongcheng
    • Xu; Yanghuan
    • Zhang; Tongyuan
  • Original Assignees
Abstract
The present invention discloses a method for channel decoupling of a whole-roller flatness meter for a cold-rolled strip. The method includes the following steps: 1, setting a channel number and a channel breadth of the flatness meter; 2, obtaining an influence matrix under the condition of coupled channels; 3, calculating an inverse matrix of the influence matrix; 4, decoupling the channel by the inverse matrix of the influence matrix; and 5, obtaining flatness distribution after channel decoupling. The present invention decouples the channel of the whole-roller flatness meter by inverting the influence matrix and multiplying with the detection force vector. The present invention reproduces the true force vector and flatness distribution, and provides a new method for improving the flatness detection accuracy.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119 to Chinese Patent Application No. 201910347862.4 filed Apr. 28, 2019, the entirety of which is incorporated by reference herein.


TECHNICAL FIELD

The present invention belongs to the field of strip rolling, and particularly relates to a method for channel decoupling of a whole-roller flatness meter for a cold-rolled strip.


BACKGROUND

With the advantages of high performance and high precision, cold-rolled strips are widely used in industrial manufacturing sectors such as automobiles, home appliances, construction and electronics. Cold-rolled strips are high-value-added (HVA) products. The technical level of strip production demonstrates a country's ability to produce iron and steel and has already become a characteristic of a strong country of iron and steel industry and an important symbol of a country's industrialization level. Flatness is an important quality indicator of cold-rolled strip. Poor flatness will cause difficulties to the subsequent processes and lead to the occurrence of accidents like strangled rolls or broken strips and may even damage the rolling mill in serious cases.


Flatness detection is the key to control flatness and improve the flatness quality. Flatness meters are necessary high-end instruments for producing advanced cold-rolled strip and realizing intelligent production process. There are various types of cold-rolled strip flatness meters, such as multi-piece type (segmented type), probe type and whole-roller type. Flatness meters technology has been monopolized by a few large international companies for a long time. In recent years, China has made major progress in the research of cold-rolled strip flatness meters, and independently developed the whole-roller flatness meter.


The whole-roller flatness meter is provided therein with 2 to 4 elongated holes in the axial direction near the surface inside the detection roll. A series of sensors are installed in the holes. The sensors each have an axial width of 26 mm and the detection channels are distinguished by the corresponding axial position of each sensor in the holes. The whole-roll type flatness meter is different from the probe type flatness meter in which sensors are spirally arranged on the detection roll. There are fewer mounting holes on the detection roll of the whole-roll flatness meter and the sensors are arranged next to each other along a straight line, which simultaneously detect the flatness of the strip on the same cross section to ensure synchronous flatness detection. However, because the sensors are arranged next to each other in the holes, the adjacent channels overlap and coupled obviously, causing errors in flatness detection. Therefore, it is necessary to decouple the channels for accuracy. At present, there are no accurate decoupling methods reported in the world.


SUMMARY

An objective of the present invention is to provide a method for eliminating interference between channels of a whole-roller flatness meter, so as to improve the flatness detection accuracy.


The present invention provides a method for channel decoupling of a whole-roller flatness meter for a cold-rolled strip, including the following steps:


a, setting a channel number n and a channel breadth b of the flatness meter;


b, obtaining an influence matrix under the condition of signal interference between the channels, which includes the following steps:


b1, making a temporary variable i=1;


b2, making a temporary variable j=1;


b3, using a calibration device to apply a calibration force to an i channel of the flatness meter;


b4, recording an analog/digital (AD) influence value of the i channel on a j channel;


b5, determining whether j=n is true; if yes, going to b6; if not, making j=j+1 and returning to b4;


b6, determining whether i=n is true; if yes, going to b7; if not, making i=i+1 and returning to b3;


b7, making a temporary variable i=1;


b8, making a temporary variable j=1;


b9, calculating an influence coefficient βjijijj of the i channel on the j channel;


b10, determining whether j=n is true; if yes, going to b11; if not, making j=j+1 and returning to b9;


b11, determining whether i=n is true; if yes, going to b12; if not, making i=i+1 and returning to b9; and


b12, forming an influence matrix B of coupled channels with all Bji , B being a square matrix, where j is a row number of the matrix, ranging from 1 to n, and i is a column number of the matrix, ranging from 1 to n;


c, calculating an inverse matrix (B)−1 of the influence matrix;


d, using the inverse matrix of the influence matrix to decouple the channels according to a measured signal of the flatness meter; and


e, obtaining flatness distribution after channel decoupling.


Preferably, step d includes the following steps:


d1, setting a detection force signal Hi of the flatness meter, i ranging from 1 to n, and forming a column vector H with Hi; and


d2, multiplying the inverse matrix (B) −1 of the influence matrix by the column vector H to obtain a channel-decoupled true force vector F, where the true force vector F has a total of n elements, and each element is Fi.


Preferably, step e includes the following steps:


e1, setting a total strip tension T, a strip breadth B and a mean strip thickness h, and calculating a mean strip tensile stress σmean=T/(Bh);


e2, dividing the strip breadth B by the channel breadth b and rounding to obtain a temporary integer mi;


e3, determining whether m1 is an odd number; if yes, making a strip-covered channel number of the flatness meter m=m1 and going to e4; if not, making the strip-covered channel number of the flatness meter m=m1+1, and going to e4;


e4, making a left boundary number of the strip-covered channel number of the flatness meter mz =(n−m)/2+1 and a right boundary number of the strip-covered channel number of the flatness meter my=n−(n−m)/2;


e5, calculating a mean force








F
_

=




i
=

m
z



m
y





F
i



/


m



;




and


e6, setting an elastic modulus E and a Poisson's ratio ν of a strip, and calculating true flatness distribution








ɛ
i

=




F
_

-

F
i



F
_




σ

m

e

a

n





1
-

υ
2


E

×
1


0
5



,




where i ranges from mz to my.


Compared with the prior art, the present invention has the follow advantages:


The present invention decouples the channel of the whole-roller flatness meter by inverting the influence matrix and multiplying with the detection force vector, thereby reproducing the true force vector and flatness distribution and improving the flatness detection accuracy.





BRIEF DESCRIPTION OF DRAWINGS


FIGS. 1a and 1b are structural diagrams of a whole-roller flatness meter according to the present invention.



FIG. 2 is a flow diagram according to the present invention.



FIGS. 3a and 3b are structural diagrams of a calibration device.



FIG. 4 is a comparison diagram of flatness distribution before and after channel decoupling.





REFERENCE NUMERALS


1. motor, 2. calibration bracket, 3. calibration beam, 4. calibration weight, 5. detection roll, 6. bearing seat, 7. pressure roller, 8. calibration rod, 9. sensor, 10. elongated hole, and 11. Detection channel.


DETAILED DESCRIPTION

The technical solutions in the examples of the present invention are clearly and completely described with reference to the accompanying drawings in the examples of the present invention. As will be apparent, the described examples are merely a part rather than all of the examples of the present invention. All other examples obtained by a person of ordinary skill in the art based on the examples of the present invention without creative efforts should fall within the protection scope of the present invention.



FIGS. 1a and 1b are structural diagrams of a whole-roller flatness meter according to the present invention. A plurality of elongated holes 10 are provided near a surface inside a detection roll 5 of a whole-roller flatness meter along an axial direction thereof. There are usually 2-4 elongated holes arranged in a circumferential array. FIGS. 1a and 1b show two elongated holes 10 penetrating the entire detection roll 5 in the axial direction. The elongated holes 10 are divided into a plurality of channels 11 at equal distances in the axial direction. Each channel 11 is provided therein with a sensor 9, and an axial length of the channel 11 is greater than or equal to an axial length of the sensor 9. In a preferred implementation, the axial length of the channel 11 is 26 mm, that is, an axial central distance between every two adjacent sensors 9 is 26 mm


In the present invention, in order to reduce a flatness detection error caused by the coupling between adjacent channels 11, the channels need to be accurately decoupled. As shown in FIG. 2, a decoupling process includes the following steps:


a, set a channel number of the flatness meter n=57, a channel breadth b=26 mm, where the channel number is equal to the number of sensors in one elongated hole, that is, a plurality of sensors 9 are provided one after another along the elongated hole 10.


b, obtain an influence matrix under the condition of signal interference between the channels. A calibration force is applied to an i channel by a calibration device, and an analog/digital (AD) influence value of the i channel on a j channel is recorded. In an actual calibration process, the AD influence values of the i channel on ≤i −2 and >i+2 channels are approximately zero. Therefore, it is only necessary to record the AD influence value of the i channel on an i−1 channel, the i channel and an i+1 channel. The recorded results are shown in Table 1 below. In the table, a first column indicates a code of a channel applying a calibration force, a second column indicates an AD influence value of a channel applying a calibration force on a previous channel, a third column indicates an AD influence value of a channel applying a calibration force on itself, and a fourth column indicates an AD influence value of a channel applying a calibration force on a subsequent channel.


The main structure of the calibration device is shown in FIGS. 3a and 3b. During a calibration process, the detection roll 5 of the flatness meter is driven by a motor 1 to rotate within a bearing seat 6. A calibration beam 3 is connected to the detection roll 5 of the flatness meter through a calibration bracket 2. A calibration rod 8 is sleeved [uncertain as to meaning] on the calibration beam 3. The calibration rod 8 can move along the calibration beam 3 and be axially fixed at a predetermined position. A pressure roller 7 is mounted on the calibration rod 8. Due to gravity, a calibration weight 4 located at one end of the calibration rod 8, the pressure roller 7 rotates with the detection roll 5 toward each other, and generates a calibration force to the sensor 9 in the channel 11 of the detection roll 5. After the AD influence value of a channel 11 on itself and on an adjacent channel 11 is detected, the axial fixation of the calibration rod 8 can be released, and move above the other channels 11 to continue measurement.









TABLE 1







AD influence values between three


adjacent channels












Channel






Code
j = i − 1
j = i
j = i + 1







i = 1
/
14493
1483



i = 2
1883
17335
2845



i = 3
1902
15664
1933



i = 4
1801
14771
2372



i = 5
2048
14607
1415



i = 6
1507
13070
2725



i = 7
1716
14222
2261



i = 8
1431
15523
2772



i = 9
2280
14232
1992



i = 10
1087
14429
3095



i = 11
1598
16081
3022



i = 12
1508
18166
2476



i = 13
1844
13418
2007



i = 14
1254
18842
3119



i = 15
2602
15493
2499



i = 16
1416
17296
2899



i = 17
2099
15808
2777



i = 18
1720
18319
2831



i = 19
2003
15423
1886



i = 20
1700
16667
2703



i = 21
2173
16123
2471



i = 22
1649
17347
2777



i = 23
2219
14386
1994



i = 24
1139
14060
3073



i = 25
2006
16191
1938



i = 26
1324
15200
1840



i = 27
2193
15223
1927



i = 28
1236
14861
2781



i = 29
2024
16244
2118



i = 30
1524
15839
2259



i = 31
2093
16953
2677



i = 32
1861
15714
2554



i = 33
1885
16135
2283



i = 34
2020
15232
1949



i = 35
1823
16019
2272



i = 36
1462
16275
2057



i = 37
2400
15816
2355



i = 38
1928
15556
2700



i = 39
2225
15722
2050



i = 40
1318
17950
2305



i = 41
2347
15278
2216



i = 42
1689
16916
3082



i = 43
2613
17406
2142



i = 44
1503
16887
2278



i = 45
2057
18211
2275



i = 46
2522
16718
2446



i = 47
2245
19027
1925



i = 48
2094
16642
1942



i = 49
1927
16270
2747



i = 50
1882
17667
2253



i = 51
2060
16845
2282



i = 52
1880
16463
2012



i = S3
2460
14555
2006



i = 54
987
15751
2170



i = 55
2233
14410
2090



i = 56
1253
16419
2741



i = 57
2038
17689
/










Influence coefficients βji in the influence matrix are respectively calculated with the data of Table 1, as shown in Table 2 below. j is a row number of the matrix, also ranging from 1 to n, and i is a column number of the matrix, ranging from 1 to n. The influence coefficients in the influence matrix B are all 0 except for those given in the table below.









TABLE 2







Influence coefficients βji in the influence matrix










Channel





Code
j = i − 1
j = i
j = i + 1





i = 1
/
1
0.0855


i = 2
0.1299
1
0.1816


i = 3
0.1097
1
0.1309


i = 4
0.1150
1
0.1624


i = 5
0.1387
1
0.1083


i = 6
0.1032
1
0.1916


i = 7
0.1313
1
0.1457


i = 8
0.1006
1
0.1948


i = 9
0.1469
1
0.1381


i = 10
0.0764
1
0.1925


i = 11
0.1107
1
0.1664


i = 12
0.0938
1
0.1845


i = 13
0.1015
1
0.1065


i = 14
0.0935
1
0.2025









c, calculate an inverse matrix (B)−1 of the influence matrix, where elements in columns 1 to 8 of (B)−1 are shown in Table 3 below; j is a row number and i is a column number of the matrix.









TABLE 3







Elements in columns 1 to 8 of (B)−1















Column/










Row










Number
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8


















j = 1
1.0115
−0.1341
0.0149
−0.0018
0.0002
0.0000
0.0000
0.0000


j = 2
−0.0883
1.0324
−0.1150
0.0135
−0.0019
0.0002
0.0000
0.0000


j = 3
0.0163
−0.1904
1.0369
−0.1220
0.0171
−0.0018
0.0002
0.0000


j = 4
−0.0022
0.0255
−0.1389
1.0396
−0.1458
0.0154
−0.0021
0.0002


j = 5
0.0004
−0.0042
0.0228
−0.1708
1.0355
−0.1096
0.0146
−0.0015


j = 6
0.0000
0.0005
−0.0025
0.0190
−0.1151
1.0384
−0.1384
0.0143


j = 7
0.0000
−0.0001
0.0005
−0.0037
0.0224
−0.2020
1.0423
−0.1080


j = 8
0.0000
0.0000
−0.0001
0.0006
−0.0034
0.0303
−0.1563
1.0460


j = 9
0.0000
0.0000
0.0000
−0.0001
0.0007
−0.0060
0.0308
−0.2059


j = 10
0.0000
0.0000
0.0000
0.0000
−0.0001
0.0008
−0.0043
0.0291


j = 11
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0002
0.0008
−0.0057


j = 12
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0001
0.0010


j = 13
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0002


j = 14
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 15
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 16
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 17
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 18
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 19
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 20
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 21
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 22
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 23
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 24
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 25
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 26
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 27
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 28
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 29
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 30
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 31
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 32
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 33
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 34
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 35
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 36
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 37
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 38
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 39
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 40
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 41
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 42
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 43
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 44
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 45
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 46
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 47
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 48
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 49
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 50
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 51
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 52
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 53
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 54
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 55
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 56
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 57
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000









Elements in columns 9 to 16 of (B)−1 are shown in Table 4 below









TABLE 4







Elements in columns 9 to 16 of (B)−1















Column/










Row










Number
i = 9
i = 10
i = 11
i = 12
i = 13
i = 14
i = 15
i = 16


















j = 1
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 2
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 3
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 4
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 5
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 6
−0.0021
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 7
0.0160
−0.0013
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000


j = 8
−0.1553
0.0121
−0.0014
0.0001
0.0000
0.0000
0.0000
0.0000


j = 9
1.0415
−0.0813
0.0092
−0.0009
0.0001
0.0000
0.0000
0.0000


j = 10
−0.1470
1.0336
−0.1163
0.0111
−0.0011
0.0001
0.0000
0.0000


j = 11
0.0287
−0.2021
1.0389
−0.0993
0.0102
−0.0010
0.0001
0.0000


j = 12
−0.0049
0.0343
−0.1762
1.0361
−0.1063
0.0102
−0.0014
0.0001


j = 13
0.0009
−0.0064
0.0328
−0.1932
1.0302
−0.0991
0.0139
−0.0013


j = 14
−0.0001
0.0007
−0.0036
0.0212
−0.1129
1.0400
−0.1456
0.0137


j = 15
0.0000
−0.0001
0.0007
−0.0043
0.0232
−0.2135
1.0437
−0.0982


j = 16
0.0000
0.0000
−0.0001
0.0006
−0.0034
0.0316
−0.1543
1.0377


j = 17
0.0000
0.0000
0.0000
−0.0001
0.0006
−0.0059
0.0288
−0.1936


j = 18
0.0000
0.0000
0.0000
0.0000
−0.0001
0.0009
−0.0045
0.0300


j = 19
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0002
0.0008
−0.0056


j = 20
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0001
0.0006


j = 21
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0001


j = 22
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 23
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 24
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 25
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 26
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 27
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 28
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 29
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 30
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 31
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 32
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 33
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 34
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 35
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 36
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 37
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 38
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 39
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 40
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 41
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 42
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 43
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 44
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 45
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 46
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 47
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 48
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 49
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 50
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 51
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 52
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 53
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 54
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 55
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 56
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 57
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000









Elements in columns 17 to 24 of (B)−1 are shown in Table 5.









TABLE 5







Elements in columns 17 to 24 of (B)−1















Column/










Row










Number
i = 17
i = 18
i = 19
i = 20
i = 21
i = 22
i = 23
i = 24


















j = 1
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 2
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 3
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 4
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 5
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 6
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 7
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 8
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 9
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 10
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 11
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 12
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 13
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 14
−0.0017
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 15
0.0121
−0.0013
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000


j = 16
−0.1281
0.0142
−0.0016
0.0002
0.0000
0.0000
0.0000
0.0000


j = 17
1.0410
−0.1156
0.0128
−0.0014
0.0002
0.0000
0.0000
0.0000


j = 18
−0.1611
1.0386
−0.1150
0.0130
−0.0017
0.0002
0.0000
0.0000


j = 19
0.0300
−0.1931
1.0343
−0.1166
0.0154
−0.0016
0.0002
0.0000


j = 20
−0.0035
0.0223
−0.1197
1.0362
−0.1371
0.0144
−0.0019
0.0002


j = 21
0.0006
−0.0038
0.0204
−0.1764
1.0385
−0.1089
0.0141
−0.0011


j = 22
−0.0001
0.0006
−0.0030
0.0258
−0.1517
1.0415
−0.1348
0.0110


j = 23
0.0000
−0.0001
0.0006
−0.0050
0.0296
−0.2034
1.0380
−0.0845


j = 24
0.0000
0.0000
−0.0001
0.0007
−0.0043
0.0297
−0.1514
1.0405


j = 25
0.0000
0.0000
0.0000
−0.0001
0.0008
−0.0057
0.0290
−0.1996


j = 26
0.0000
0.0000
0.0000
0.0000
−0.0001
0.0007
−0.0038
0.0259


j = 27
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0001
0.0005
−0.0032


j = 28
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0001
0.0004


j = 29
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0001


j = 30
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 31
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 32
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 33
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 34
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 35
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 36
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 37
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 38
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 39
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 40
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 41
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 42
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 43
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 44
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 45
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 46
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 47
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 48
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 49
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 50
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 51
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 52
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 53
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 54
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 55
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 56
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 57
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000









Elements in columns 25 to 32 of (B)−1 are shown in Table 6 below









TABLE 6







Elements in columns 25 to 32 of (B)−1















Column/










Row










Number
i = 25
i = 26
i = 27
i = 28
i = 29
i = 30
i = 31
i = 32


















j = 1
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 2
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 3
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 4
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 5
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 6
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 7
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 8
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 9
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 10
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 11
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 12
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 13
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 14
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 15
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 16
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 17
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 18
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 19
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 20
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 21
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 22
−0.0016
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 23
0.0122
−0.0010
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000


j = 24
−0.1500
0.0125
−0.0018
0.0002
0.0000
0.0000
0.0000
0.0000


j = 25
1.0395
−0.0865
0.0126
−0.0010
0.0001
0.0000
0.0000
0.0000


j = 26
−0.1349
1.0292
−0.1501
0.0125
−0.0017
0.0002
0.0000
0.0000


j = 27
0.0165
−0.1258
1.0292
−0.0856
−0.1429
0.0136
−0.0018
0.0002


j = 28
−0.0022
0.0167
−0.1367
1.0356
−0.1429
0.0136
−0.0018
0.0002


j = 29
0.0004
−0.0029
0.0237
−0.1796
1.0377
−0.0991
0.0134
−0.0015


j = 30
−0.0001
0.0004
−0.0032
0.0245
−0.1413
1.0318
−0.1390
0.0156


j = 31
0.0000
−0.0001
0.0004
−0.0033
0.0192
−0.1402
1.0383
−0.1162


j = 32
0.0000
0.0000
−0.0001
0.0006
−0.0033
0.0243
−0.1804
1.0399


j = 33
0.0000
0.0000
0.0000
−0.0001
0.0005
−0.0039
0.0291
−0.1678


j = 34
0.0000
0.0000
0.0000
0.0000
−0.0001
0.0006
−0.0044
0.0255


j = 35
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0001
0.0005
−0.0031


j = 36
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0001
0.0004


j = 37
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0001


j = 38
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 39
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 40
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 41
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 42
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 43
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 44
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 45
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 46
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 47
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 48
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 49
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 50
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 51
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 52
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 53
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 54
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 55
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 56
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 57
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000









Elements in columns 33 to 40 of (B)−1 are shown in Table 7.









TABLE 7







Elements in columns 33 to 40 of (B)−1















Column/










Row










Number
i = 33
i = 34
i = 35
i = 36
i = 37
i = 38
i = 39
i = 40


















j = 1
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 2
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 3
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 4
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 5
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 6
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 7
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 8
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 9
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 10
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 11
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 12
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 13
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 14
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 15
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 16
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 17
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 18
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 19
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 20
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 21
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 22
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 23
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 24
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 25
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 26
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 27
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 28
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 29
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 30
−0.0019
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 31
0.0142
−0.0018
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000


j = 32
−0.1272
0.0162
−0.0020
0.0002
0.0000
0.0000
0.0000
0.0000


j = 33
1.0399
−0.1321
0.0160
−0.0015
0.0002
0.0000
0.0000
0.0000


j = 34
−0.1582
1.0351
−0.1255
0.0117
−0.0018
0.0002
0.0000
0.0000


j = 35
0.0195
−0.1276
1.0286
−0.0958
0.0144
−0.0018
0.0003
0.0000


j = 36
−0.0028
0.0182
−0.1465
1.0336
−0.1554
0.0194
−0.0028
0.0002


j = 37
0.0004
−0.0024
0.0194
−0.1370
1.0399
−0.1300
0.0188
−0.0016


j = 38
−0.0001
0.0004
−0.0030
0.0213
−0.1614
1.0456
−0.1510
0.0129


j = 39
0.0000
−0.0001
0.0005
−0.0037
0.0280
−0.1813
1.0361
−0.0886


j = 40
0.0000
0.0000
−0.0001
0.0004
−0.0033
0.0211
−0.1207
1.0308


j = 41
0.0000
0.0000
0.0000
−0.0001
0.0005
−0.0032
0.0185
−0.1579


j = 42
0.0000
0.0000
0.0000
0.0000
−0.0001
0.0004
−0.0025
0.0213


j = 43
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0001
0.0004
−0.0028


j = 44
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0001
0.0005


j = 45
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0001


j = 46
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 47
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 48
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 49
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 50
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 51
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 52
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 53
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 54
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 55
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 56
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 57
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000









Elements in columns 41 to 48 of (B)−1 are shown in Table 8.









TABLE 8







Elements in columns 41 to 48 of (B)−1















Column/










Row










Number
i = 41
i = 42
i = 43
i = 44
i = 48
i = 46
i = 47
i = 48


















j = 1
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 2
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 3
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 4
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 5
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 6
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 7
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 8
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 9
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 10
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 11
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 12
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 13
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 14
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 15
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 16
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 17
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 18
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 19
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 20
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 21
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 22
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 23
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 24
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 25
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 26
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 27
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 28
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 29
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 30
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 31
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 32
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 33
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 34
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 35
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 36
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 37
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 38
−0.0017
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 39
0.0118
−0.0013
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000


j = 40
−0.1368
0.0156
−0.0024
0.0002
0.0000
0.0000
0.0000
0.0000


j = 41
1.0361
−0.1178
0.0184
−0.0016
0.0002
0.0000
0.0000
0.0000


j = 42
−0.1396
1.0443
−0.1631
0.0143
−0.0018
0.0003
0.0000
0.0000


j = 43
0.0250
−0.1870
1.0405
−0.0913
0.0113
−0.0016
0.0002
0.0000


j = 44
−0.0032
0.0241
−0.1341
1.0275
−0.1276
0.0180
−0.0024
0.0003


j = 45
0.0004
−0.0031
0.0171
−0.1310
1.0358
−0.1460
0.0199
−0.0022


j = 46
−0.0001
0.0004
−0.0024
0.0182
−0.1435
1.0380
−0.1412
0.0158


j = 47
0.0000
−0.0001
0.0003
−0.0024
0.0187
−0.1352
1.0315
−0.1151


j = 48
0.0000
0.0000
0.0000
0.0003
−0.0022
0.0159
−0.1210
1.0278


j = 49
0.0000
0.0000
0.0000
0.0000
0.0003
−0.0019
0.0147
−0.1250


j = 50
0.0000
0.0000
0.0000
0.0000
0.0000
0.0003
−0.0023
0.0197


j = 51
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0003
−0.0027


j = 52
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0004


j = 53
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0001


j = 54
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 55
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 56
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 57
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000









Elements in columns 49 to 56 of (B)−1 are shown in Table 9.









TABLE 9







Elements in columns 49 to 56 of (B)−1















Column/










Row










Number
i = 49
i = 50
i = 51
i = 52
i = 53
i = 54
i = 55
i = 56


















j = 1
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 2
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 3
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 4
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 5
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 6
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 7
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 8
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 9
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 10
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 11
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 12
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 13
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 14
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 15
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 16
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 17
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 18
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 19
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 20
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 21
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 22
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 23
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 24
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 25
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 26
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 27
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 28
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 29
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 30
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 31
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 32
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 33
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 34
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 35
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 36
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 37
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 38
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 39
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 40
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 41
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 42
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 43
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 44
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 45
0.0003
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 46
−0.0019
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


j = 47
0.0136
−0.0016
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000


j = 48
−0.1212
0.0142
−0.0017
0.0002
0.0000
0.0000
0.0000
0.0000


j = 49
1.0334
−0.1215
0.0144
−0.0016
0.0002
0.0000
0.0000
0.0000


j = 50
−0.1633
1.0353
−0.1227
0.0140
−0.0021
0.0001
0.0000
0.0000


j = 51
0.0222
−0.1407
1.0327
−0.1177
0.0177
−0.0012
0.0002
0.0000


j = 52
−0.0031
0.0199
−0.1462
1.0379
−0.1565
0.0108
−0.0016
0.0001


j = 53
0.0004
−0.0028
0.0204
−0.1448
1.0307
−0.0714
0.0102
−0.0009


j = 54
−0.0001
0.0004
−0.0027
0.0188
−0.1342
1.0314
−0.1479
0.0131


j = 55
0.0000
−0.0001
0.0004
−0.0029
0.0204
−0.1571
1.0339
−0.0917


j = 56
0.0000
0.0000
−0.0001
0.0004
−0.0027
0.0204
−0.1342
1.0315


j = 57
0.0000
0.0000
0.0000
−0.0001
0.0004
−0.0032
0.0208
−0.1598









Elements in column 57 of (B)−1 are shown in Table 10.









TABLE 10







Elements in column 57 of (β)−1










Column/




Number
i = 57














j = 1
0.0000



j = 2
0.0000



j = 3
0.0000



j = 4
0.0000



j = 5
0.0000



j = 6
0.0000



j = 7
0.0000



j = 8
0.0000



j = 9
0.0000



j = 10
0.0000



j = 11
0.0000



j = 12
0.0000



j = 13
0.0000



j = 14
0.0000



j = 15
0.0000



j = 16
0.0000



j = 17
0.0000



j = 18
0.0000



j = 19
0.0000



j = 20
0.0000



j = 21
0.0000



j = 22
0.0000



j = 23
0.0000



j = 24
0.0000



j = 25
0.0000



j = 26
0.0000



j = 27
0.0000



j = 28
0.0000



j = 29
0.0000



j = 30
0.0000



j = 31
0.0000



j = 32
0.0000



j = 33
0.0000



j = 34
0.0000



j = 35
0.0000



j = 36
0.0000



j = 37
0.0000



j = 38
0.0000



j = 39
0.0000



j = 40
0.0000



j = 41
0.0000



j = 42
0.0000



j = 43
0.0000



j = 44
0.0000



j = 45
0.0000



j = 46
0.0000



j = 47
0.0000



j = 48
0.0000



j = 49
0.0000



j = 50
0.0000



j = 51
0.0000



j = 52
0.0000



j = 53
0.0001



j = 54
−0.0016



j = 55
0.0114



j = 56
0.1280



j = 57
1.0198










d, use the inverse matrix of the influence matrix to decouple the channels according to a measured signal of the flatness meter, specifically as follows:


d1, set a detection force signal Hi of the flatness meter, i ranging from 1 to n, and form a column vector H with Hi, where the force vector H is shown in the second column in Table 11 below.


d2, multiply the inverse matrix (B)−1 of the influence matrix by the column vector H to obtain a new vector F, which is a channel-decoupled true force vector, where the vector has a total of n elements, and each element is Fi. The vector F is shown in the third column in Table 11 below.









TABLE 11







Detection force signals of flatness


meter before and after decoupling











Row
Detection
True



Number
Force/N
Force/N















j = 1
0
0



j = 2
0
0



j = 3
0
0



j = 4
0
0



j = 5
0
0



j = 6
238.732
0



j = 7
1995.643
1818.31



j = 8
2282.108
1762.41



j = 9
2207.028
1735.11



j = 10
2096.531
1684.41



j = 11
2024.36
1558.31



j = 12
1923.888
1512.81



j = 13
1911.101
1495.91



j = 14
1821.529
1455.61



j = 15
1915.391
1495.907



j = 16
1733.662
1356.813



j = 17
1722.458
1324.31



j = 18
1720.238
1372.41



j = 19
1742.567
1345.11



j = 20
1638.449
1320.41



j = 21
1624.467
1272.31



j = 22
1618.139
1278.81



j = 23
1575.369
1235.91



j = 24
1513.801
1169.61



j = 25
1504.092
1183.91



j = 26
1527.82
1200.81



j = 27
1464.216
1220.31



j = 28
1540.136
1216.41



j = 29
1535.045
1215.11



j = 30
1507.28
1190.413



j = 31
1455.896
1168.31



j = 32
1522.097
1174.81



j = 33
1571.552
1235.91



j = 34
1534.991
1195.61



j = 35
1552.463
1287.91



j = 36
1672.224
1304.81



j = 37
1606.142
1272.313



j = 38
1723.979
1346.41



j = 39
1639.386
1293.11



j = 40
1693.386
1372.41



j = 41
1692.86
1324.31



j = 42
1857.333
1460.81



j = 43
1826.014
1443.91



j = 44
1798.144
1429.61



j = 45
1917.445
1521.91



j = 46
1991.647
1564.91



j = 47
2025.709
1636.31



j = 48
2100.595
1710.41



j = 49
2149.144
1735.31



j = 50
2299.25
1814.41



j = 51
2086.986
1844.31



j = 52
255.6476
0



j = 53
0
0



j = 54
0
0



j = 55
0
0



j = 56
0
0



j = 57
0
0










e, calculate flatness distribution after channel decoupling, specifically as follows:


e1, set a total strip tension T=64 kN, a strip breadth B=1150 mm and a mean strip thickness h=1.0 mm, and calculate a mean strip tensile stress σmean=T/(Bh)=55.65 MPa.


e2, divide the strip breadth B by the channel breadth b to get 44.23, and round to obtain a temporary integer m1=45.


e3, determine that m1 is an odd integer, and make a strip-covered channel number of the flatness meter m=m1=45.


e4, make a left boundary number of the strip-covered channel number of the flatness meter mz=(n−m) /2+1=(57−45) /2+1=7, and a right boundary number of the strip-covered channel number of the flatness meter my=n−(n−m)/2=57−(57−45)/2=51.


e5, calculate a mean force







F
_

=





i
=

m
z



m
y





F
i



/


m


=

1412.421






N
.







e6, set a strip's elastic modulus=210000 MPa E and Poisson's ratio ν=0.3, and calculate


true flatness distribution








ɛ
i

=




F
_

-

F
i



F
_




σ

m

e

a

n





1
-

υ
2


E

×
1


0
5



,




where i ranges from mz to my. The calculation results are shown in the third column in Table 12 below. If the detection force vector H is not decoupled, H will be directly used to calculate the flatness distribution. The calculation results are shown in the second column of Table 12.









TABLE 12







Flatness distribution before and after decoupling










Flatness before
Flatness after


Channel
Decoupling/I-Unit
Decoupling I-Unit












i = 7
−2.83506
−6.88606


i = 8
−6.70361
−5.933


i = 9
−5.6897
−5.46755


i = 10
−4.19749
−4.60314


i = 11
−3.22286
−2.45322


i = 12
−1.86605
−1.67747


i = 13
−1.69337
−1.38934


i = 14
−0.48374
−0.70225


i = 15
−1.7513
−1.38929


i = 16
0.702855
0.982187


i = 17
0.854151
1.536337


i = 18
0.884136
0.716261


i = 19
0.582598
1.18171


i = 20
1.987974
1.602829


i = 21
2.177471
2.422904


i = 22
2.262932
2.312083


i = 23
2.840517
3.043502


i = 24
3.671959
4.173876


i = 25
3.803066
3.930069


i = 26
3.482638
3.641935


i = 27
4.341572
3.309472


i = 28
3.316314
3.375965


i = 29
3.385063
3.398129


i = 30
3.760019
3.819204


i = 31
4.453929
4.19604


i = 32
3.559918
4.085219


i = 33
2.892061
3.043502


i = 34
3.3858
3.730592


i = 35
3.14985
2.156934


i = 36
1.532541
1.8688


i = 37
2.424937
2.42286


i = 38
0.833611
1.159545


i = 39
1.976
2.068277


i = 40
1.248629
0.716261


i = 41
1.253861
1.536337


i = 42
−0.96726
−0.7909


i = 43
−0.54431
−0.50277


i = 44
−0.16795
−0.25896


i = 45
−1.77904
−1.83262


i = 46
−2.78109
−2.56404


i = 47
−3.24109
−3.78307


i = 48
−4.25237
−5.04643


i = 49
−4.90801
−5.46755


i = 50
−6.9351
−6.81956


i = 51
−4.0686
−7.32934









According to the second and third columns of Table 12 and FIG. 4, if the detection force vector H is not decoupled, as shown by curve L1 of FIG. 4, there will be a flatness error of 2-4 (I-Unit) occurring on channels at both edges of the strip, which indicates that the calculated overall flatness error is large. After the detection force vector H is decoupled through the inverse matrix of the influence matrix, as shown by curve L2 in FIG. 4, flatness detected by the channels at both edges tend to be reasonable, that is, the true force vector and flatness distribution are reproduced.


The present invention decouples the channel of the whole-roller flatness meter by inverting the influence matrix and multiplying with the detection force vector, thereby reproducing the true force vector and flatness distribution and improving the flatness detection accuracy.


Finally, it should be noted that the above examples are merely intended to illustrate the present invention, rather than to limit the technical solutions described in the present invention. Therefore, those of ordinary skill in the art should understand that although this specification describes the present invention in detail with reference to the above-mentioned examples, the present invention can still be modified or equivalently replaced. All technical solutions and improvements made without deviating from the spirit and scope of the present invention should be covered by the scope of the claims of the present invention.

Claims
  • 1. A method for channel decoupling of a whole-roller flatness meter for a cold-rolled strip, comprising the following steps executed by artificial calibration and by a computer: a, setting a channel number n and a channel breadth b of the flatness meter;b, obtaining an influence matrix under the condition of signal interference between the channels, which comprises the following steps:b1, making a temporary variable i=1;b2, making a temporary variable j=1;b3, using a calibration device to apply a calibration force to an i channel of the flatness meter;b4, recording an analog/digital (AD) influence value αji of the i channel on a j channel;b5, determining whether j=n is true; if yes, going to b6; if not, making j=j+1 and returning to b4;b6, determining whether i=n is true; if yes, going to b7; if not, making i=i+1 and returning to b3;b7, making a temporary variable i=1;b8, making a temporary variable j=1;b9, calculating an influence coefficient βji=αji /αjj of the i channel on the j channel;b10, determining whether j=n is true; if yes, going to b11; if not, making j=j+1 and returning to b9;b11, determining whether i=n is true; if yes, going to b12; if not, making i=i+1 and returning to b9; andb12, forming an influence matrix B of coupled channels with all, Bjj , B being a square matrix, wherein j is a row number of the matrix, ranging from 1 to n, and i is a column number of the matrix, ranging from 1 to n;c, calculating an inverse matrix (B)−1 of the influence matrix;d, using the inverse matrix of the influence matrix to decouple the channels according to a measured signal of the flatness meter; ande, obtaining flatness distribution after channel decoupling.
  • 2. The method for channel decoupling of a whole-roller flatness meter for a cold-rolled strip according to claim 1, wherein step d specifically comprises: d1, setting a detection force signal Hi of the flatness meter, i ranging from 1 to n, and forming a column vector H with Hi; andd2, multiplying the inverse matrix (B)−1 of the influence matrix by the column vector H to obtain a channel-decoupled true force vector F, wherein the true force vector F has a total of n elements, and each element is Fi.
  • 3. The method for channel decoupling of a whole-roller flatness meter for a cold-rolled strip according to claim 1, wherein step e specifically comprises: e1, setting a total strip tension T, a strip breadth B and a mean strip thickness h, and calculating a mean strip tensile stress σmean=T/(Bh).e2, dividing the strip breadth B by the channel breadth b and rounding to obtain a temporary integer mi;e3, determining whether m1 is an odd number; if yes, making a strip-covered channel number of the flatness meter m=m1, and going to e4; if not, making the strip-covered channel number of the flatness meter m=m1+1, and going to e4;e4, making a left boundary number of the strip-covered channel number of the flatness meter mz=(n−m)/2+1, and a right boundary number of the strip-covered channel number of the flatness meter my=n−(n−m)/2;e5, calculating a mean force
  • 4. The method for channel decoupling of a whole-roller flatness meter for a cold-rolled strip according to claim 2, wherein step e specifically comprises: e1, setting a total strip tension T, a strip breadth B and a mean strip thickness h, and calculating a mean strip tensile stress σmean=T/(Bh);e2, dividing the strip breadth B by the channel breadth b and rounding to obtain a temporary integer m1;e3, determining whether m1 is an odd number; if yes, making a strip-covered channel number of the flatness meter m=m1, and going to e4; if not, making the strip-covered channel number of the flatness meter m=mi +1, and going to e4;e4, making a left boundary number of the strip-covered channel number of the flatness meter mz=(n−m)/2+1, and a right boundary number of the strip-covered channel number of the flatness meter my=n−(n−m)2;e5, calculating a mean force
Priority Claims (1)
Number Date Country Kind
201910347862.4 Apr 2019 CN national