This invention relates broadly to the investigation of geological formations traversed by a borehole. More particularly, this invention relates to a method for characterizing a geological formation providing 360-degree views of the borehole wall.
Electrical and acoustic borehole-imaging tools are widely used to log subsurface boreholes to locate and map the boundaries between rock layers (i.e., bed boundaries), and to visualize and orient fractures and faults
Electrical borehole images run in water-based mud, such as Schlumberger's FMI (Formation MicroImager) log, are based on dipmeter technology that has been commercially available since the 1950's (Bigelow, 1985a, b, c, d, e; Gilreath, 1987; Adams et al., 1987; Hurley, 2004).
The data acquisition sequence for these tools generally runs as follows. Tools are first run into the hole with the pads closed. At the start of the log run, either four, six, or eight pads are pressed against the borehole wall. The number of pads depends on the logging device which is being used. Electrical current is forced into the rock through the electrodes, and remote sensors measure the current after it interacts with the formation (
Areal coverage of the borehole face is a function of width of the electrode arrays, number of pads, and borehole diameter. In general, 40 to 80% of the borehole face is imaged in typical boreholes. Non-imaged parts of the borehole appear as blank strips between the pads on the resulting borehole log.
Depth of investigation is small, generally less than 1 in (2.5 cm) into the formation (Williams, C. G., Jackson, P. D., Lovell, M. A., and Harvey, P. K., 1997, Assessment and interpretation of electrical borehole images using numerical simulations: The Log Analyst, v. 38, No. 6, p. 34-44). Logging rate, which is comparable to other openhole logs, is 1,600 to 1,800 ft/hr (500 to 550 m/hr). Pressure and temperature limitations are comparable to those placed on conventional logging tools.
Typically, a processed electrical borehole image is basically a map of resistivity of the rock-fluid system at the borehole face. Because it is more difficult to examine borehole images in 3-D, it is common to split the borehole along true north, then unroll the cylinder until it becomes a 2-D view.
Data processing is done on workstation, PC, or mainframe computers using commercially available software. Processing steps involve correcting the directional data, that is, first pad (pad 1) azimuth (tool orientation) and hole azimuth, for magnetic declination. Some programs also correct for magnetic inclination. Note that magnetic declination varies with time and space. Charts and computer programs are available to compute magnetic declination for any location in the world on any logging date. Next, accelerometer corrections are applied, making sure that the accelerometer curve is depth matched with the resistivity traces. The accelerometer accounts for differential sticking, speed variations, and resonant vibrations that occur as the tool moves up the hole. Finally, resistivity traces must be depth shifted using physical tool specifications, so that different rows of buttons are in line where the same slice of the borehole, perpendicular to the tool, was imaged. At very small scales (less than 6 in; 15 cm), nonlinear depth shifts occur that may not be correctable by conventional data-processing algorithms. As a result, not every surface that shows electrical contrast is exactly on depth.
Typically, borehole images are created by assigning colour maps to different bins or ranges of resistivity values. Colour pixels are then arranged in their proper geometric position around the wellbore. By convention, low-resistivity features, such as shales or fluid-filled fractures, are displayed as dark colours. High-resistivity features, such as sandstones and limestones, are displayed as shades of brown, yellow, and white (
Two main types of processed borehole images are available: static and dynamic. Static images are those which have had one contrast setting applied to the entire well. They provide useful views of relative changes in rock resistivity throughout the borehole. Static images can be calibrated in ohm-m to devices such as the Schlumberger's LLS log(Shallow Latero-log), a shallow-reading resistivity log. With normal processing, borehole images are uncalibrated. Images can be corrected for EMEX voltage, a background voltage that is adjusted on the logging truck to improve image quality. Dynamic images, which have had variable contrast applied in a moving window, provide enhanced views of features such as vugs, fractures, and bed boundaries. Dynamic images bring out subtle features in rocks that have very low resistivities, such as shales, and very high resistivities, such as carbonates and crystalline rocks. U.S. Pat. No. 5,809,163, herein incorporated by reference, relates to the analysis of textural features, specifically vugs, using borehole images.
High mud resistivities (greater than 50 ohm-m), typical of oil-based muds, are unsuitable for most electrical borehole images. Since 2001, Schlumberger's OBMI (Oil-Base MicroImager), has been available for oil-based muds. This tool generates borehole images by passing electrical current into the formation from two large electrodes on each pad, which is at a high voltage (about 300V). There is a series of closely spaced buttons, located in two rows of 5 on each of the 4 pads. Borehole images are generated from the potential difference (voltage drop) between the closely spaced electrodes. Wide gaps, corresponding to non-imaged parts of the borehole, are common between pads. This problem can be partially addressed by using 2 passes of the OBMI. An alternative is to use the Dual OBMI, a tool string with 2 OBMI tools mounted adjacent to each other, with the pads of one tool rotated with respect to the other.
Borehole images can be acquired during drilling (LWD, logging-while-drilling). Examples of Schlumberger logging tools are the GVR (GeoVision Resistivity) and ADN (Azimuthal Density Neutron) tools. The GVR uses rotating electrodes, and works in water-based mud. The ADN generates images from azimuthal density readings, and works in any mud. Borehole coverage is complete, with no gaps. However, downward-facing results are generally more reliable because of minimized tool standoff from the borehole wall.
Acoustic borehole images, also known as borehole televiewers, are based on technology first developed in the 1960's (Zemanek, J., Glenn, E. E., Norton, L. J., and Caldwell, R. L., 1970, Formation evaluation by inspection with the borehole televiewer: Geophysics, v. 35, p. 254-269). The UBI (Ultrasonic Borehole Imager) is Schlumberger's primary acoustic tool for open-hole applications. The UBI tool, which is centralized in the well, has a rotating transducer that emits and records sound waves that bounce off of the borehole wall. Both acoustic amplitude and travel time are recorded and processed into images. Normally, borehole coverage is 100%, with no gaps in the images. However, poor-quality images may result when the tool is decentralized, or the borehole wall is irregular.
Therefore, as discussed above, because electrical logging tools are pad-type devices with fixed arrays of electrodes, it is common to have gaps with missing information between the pads. Electrical and acoustic logs commonly have intervals with poor data quality due to non-functioning electrodes, insufficient pad pressure, borehole irregularities, rock debris, decentralized tools, and poor acoustic reflections.
Geostatistics is a discipline concerned with spatially distributed random variables (also called “regionalized variables”), usually applied to problems in the earth sciences, such as estimation of mineral reserves and delineation of mineral deposits, hydrocarbon reservoirs, and groundwater aquifers. Typically it makes use of two-point statistics summarized in a variogram. Multipoint (or multiple-point) geostatistics (MPS) differs from the rest of variogram-based geostatistics primarily in that it characterizes spatial variability using patterns (sets of points) that involve higher order (much greater than order 2) statistics.
Multipoint geostatistical methods have been demonstrated to be computationally feasible and have been tested on real datasets as set forth in i) Strebelle, “Conditional simulation of complex geological structures using multiple-point statistics”, Mathematical Geology, v. 34, n. 1, 2002, pp. 1-22, ii) Strebelle et al., “Modeling of a deepwater turbidite reservoir conditional to seismic data using principal component analysis and multiple-point geostatistics,” SPE Journal, Vol. 8, No. 3, 2003, pp. 227-235, and iii) Liu et al., “Multiple-point simulation integrating wells, three-dimensional seismic data, and geology,” American Association of Petroleum Geologists Bulletin v. 88, no. 7, 2004, pp. 905-921.
Multipoint geostatistical methods use a numerical training image to represent the spatial variability of geological information. The training image provides a conceptual quantitative description of the subsurface geological heterogeneity, containing possibly complex multipoint patterns of geological heterogeneity. Multipoint statistics conditional simulation anchors these patterns to well data (and/or outcrop data) and to the seismic-derived information (and/or probability field information or constraint grid(s)). An example of such method is described in US-2007-0014435, assigned to Schlumberger Technology Corporation.
Geostatistics relies on the well-known concept of random variables. In simple terms, continuous or discrete properties at various spatial locations are largely unknown or uncertain; hence each property of interest at each spatial location is figured into a random variable whose variability is described by a probability function. In order to perform any type of geostatistical simulation, one requires a decision or assumption of stationarity. In multipoint geostatistical methods, the use of training images is bound by the principle of stationarity as described by Caers, J., and T. Zhang, 2004, “Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models”, in M. Grammer, P. M. Harris, and G. P. Eberli, eds., Integration of Outcrop and Modern Analogs in Reservoir Modeling, Memoir 80: Tulsa, Okla., AAPG. A random spatial field is said to be stationary if all of its statistical parameters are independent of location (invariant according to any translation). In the case of training images, this stationarity can consist of, but is not limited to, orientation stationarity, where directional elements do not rotate across the training image; and scale stationarity (where the size of elements on the image does not change across the training image).
One multipoint geostatistics method is well known in academia and industry by the name of “Single Normal Equation Simulation” (SNESIM) (Strebelle, S., 2000, “Sequential simulation drawing structures from training images, PhD thesis, Stanford University, 200p). The SNESIM method is generally considered useful for practical applications such as modeling categorical or discrete data types, especially for categorical data in 3D property modeling. In the SNESIM method, the conditional probability density function of all categories at one point is computed using knowledge of the value at a number of nearby points and statistics provided by the training image. SNESIM works with discrete values only (i.e., a finite and usually small number of categories, such as for example five different rock types).
Such methodology was well known in the early 1990's (before it was known as “SNESIM”) (Guardiano, F., and R. M. Srivastava, 1993, Multivariate geostatistics: beyond bivariate moments, in A. Soares, ed., Geostatistics-Troia, v. 1: Dordrecht, Netherlands, Kluwer Academic Publications, p. 133-144). One of the limitations of the first MPS approach, however, was that it was extremely computationally intensive to consult the training image multiple times. In 2000, Strebelle developed a technique to store the information contained in the training image in a special tree-like structure that reduced computations enormously (Strebelle, S., 2000, Sequential simulation drawing structure from training images: PhD Thesis, Stanford University, Stanford, Calif., USA). With this improvement, the methodology was commonly referred to as the SNESIM method.
The SNESIM code is faster than Guardiano and Srivastava's (1993) original algorithm, but it is computer random-access memory (RAM) demanding, especially in 3D for a large training image. This RAM limitation in 3D requires compromises that may lead to inadequate shape reproduction of 3D objects. The RAM limitation also prevents from considering too many categories or classes jointly, thus limiting SNESIM to the simulation of categorical variables. The SNESIM algorithm searches for exact replicates of the conditioning data event, builds the reservoir model one pixel at a time, conditioned to a multiple-point data event, and does not allow any filtering or averaging of the patterns found in the training image.
In order to deal with both categorical and continuous variable training images and reduce RAM cost and improve shape reproduction in 3D applications, a new MPS algorithm named FILTERSIM (FILTER-based SIMulation) was proposed by Zhang and described and incorporated herein in Zhang et al. (Zhang T., Switzer P., and Journel A., 2006, Filter-based classification of training image patterns for spatial pattern simulation: Mathematical Geology, v. 38, p. 63-80). The FILTERSIM algorithm applies a set of local filters to the training image, which can be either categorical or continuous, to group local patterns into pattern classes. It then proceeds to simulate patterns on the basis of that classification. A filter is a local template (window) with a set of weights associated to each pixel location of the template. Applying a filter to a local pattern results in a filter score, the score is viewed as a numerical summary of that local pattern. A set of default or use-defined filters is designed such that each filter can record different aspects of the training pattern seen within the template. These filters are used to transform training patterns into a filter score space. This pattern scoring provides a remarkable dimension reduction of patterns. By partitioning that score space of limited dimension, similar training patterns are classified based on their filter scores.
The FILTERSIM algorithm starts with a classification of local training patterns in a filter score space of reduced dimension. Simulation proceeds along a sequential path through the simulation space, by determining which pattern class is most similar to the local conditioning data event, sampling a specific pattern from the pattern class, and then patching the sampled pattern onto the image at the simulation sites. The simulation random path and the sampling of patterns from pattern classes allow for different simulated realizations, yet all are conditional to the same original data. Because of the dimension reduction brought by the filter summaries of any pattern, and because patterns are grouped into classes, the algorithm is fast and reasonable in terms of RAM demand.
The SNESIM and FILTERSIM algorithms are able to honour absolute or so-called “hard” constraints from data acquired in wells or outcrops, and conditional or “soft” constraints from seismic data, facies probability fields, and rotation and affinity (or scale) constraint grids. All of these data are used in the stochastic modeling process to generate 1D, 2D, or 3D maps of geological facies or rock properties. Because there is a random component involved in MPS simulations, individual realizations of property fields created by MPS algorithms differ, but the ensemble of realizations provides geoscientists and reservoir engineers with improved quantitative estimates of the spatial distribution and uncertainty of geological facies in a modeled reservoir volume. Moreover, these algorithms honour both hard and soft input data constraints.
Directional 2D default colour filter may then be used according to the FILTERSIM algorithm (see an example in
There are two types of training images: one with a very limited number of categories and another for continuous variables such as reservoir petrophysical properties. Multipoint geostatistical methods require 1D, 2D, or 3D grids of training images as prior conceptual geological models that contain patterns of the spatial attributes under study. The shapes of different features appearing on the images are supposed to represent a model of real geological features, with each category typically representing a different geological facies or different kind of geological body. Training images are typically required to contain “stationary” patterns, i.e., the patterns must be independent of their location in space (invariant according to any translation) and must be repetitive over the training image area. In the case of training images used for geological modeling, this stationarity can consist, but is not limited to, geological object orientation stationarity (where directional objects/features do not rotate across the image) and geological scale stationarity (where the size of objects/features on the image does not change across the image) (Caers, J. and Zhang, T., 2004, Multiple-point geostatistics: A quantitative vehicle for integration of geologic analogs into multiple reservoir models, in M. Grammer, P. M. Harris and G. P. Eberli, eds.: Integration of Outcrop and Modern Analogs in Reservoir Modeling, AAPG. Memoir 80, p. 383-394).
An issue raised implicitly by current MPS algorithms is how to generate training images. Training images are supposed to model or reproduce real geological features and should as much as possible be derived from existing geologically meaningful images. This requires research on statistical and image-processing methods that will allow use of images from any source, e.g., hand-drawn sketches, aerial photographs, satellite images, seismic volumes, geological object models, physical scale models, or forward geological process models. Compared to the creation of continuously variable training images, generating categorically variable training images is easier. An object-based approach is commonly used to generate training images with categorical variables. A region-based approach, combined with adding desired constraints, can be used to generate continuously variable training images.
In particular, Multipoint geostatistics (MPS) is a new advanced geostatistics approach. It allows reservoir modelers to incorporate their prior knowledge, interpretations, or conceptual models into the reservoir modeling process through training images. These training images are numerical representations of the structures/features that are believed to exist in the reservoir under study. Once we have the training images, MPS can extract curvilinear structures or complex features from the training images and anchor them to the reservoir locations where the samples/observations are collected, leading to more realistic reservoir models. Introducing training images into reservoir modeling is a milestone. Note that there are two ingredients in the use of MPS: training images (conceptual models) and the real data (observations). These two pieces are typically separated.
However, in realistic applications, generating representative training images, in particular in 3D, has proved to be a bottleneck in MPS applications. Generating a continuous variable training image is even more difficult than the creation of categorical training image.
The invention significantly improves known methods for borehole imaging by providing, by non-limiting example, methods able to “fill the gaps” between the pads of borehole image logs with modeled images.
At least one embodiment of the invention can be based on processing an image of the borehole wall using a multi-point geostatistical model. According to at least one embodiment of the invention, each borehole imaging log can be directly taken as a training image.
According to embodiments of the invention, a method for characterizing a geological formation traversed by a first borehole. The method includes (a) retrieving one or more set of measured data provided by at least one measuring tool along one or more logged borehole length for one of the first borehole, at least one other borehole or both in order to produce a borehole imaging log; (b) selecting depth-defined intervals of the borehole imaging log as training images for inputting in a multi-point geostatistical model; (c) determining pattern based simulations for each training image using at least one pixel-based template of the multi-point geostatistical model so as to obtain training image patterns; (d) using the pattern based simulation of each training image to assign to each of the training image a corresponding training image pattern; (e) constructing from the training image patterns one or more fullbore image log of a borehole wall of the first borehole; and (f) repeat steps (b) to (e) through the one or more logged borehole length in order to construct fullbore images from successive, adjacent training images.
According to aspects of the invention, the invention may include the borehole imaging log having one of processed raw data that consists of measured values and non-measured values. Further, the borehole imaging log can include one of unidentified borehole image data or data gaps. Further still, the one of unidentified borehole image data or data gaps can be from the group consisting of one of at least one damaged pad in the reservoir, at least one damaged area in the reservoir, at least one pad with inadequate pad pressure against a borehole wall in the reservoir, at least one pad obstructed from contacting the borehole wall in the reservoir or at least one inoperable pad in the reservoir, electronic malfunctions from the measuring tool or other devices. It is possible the determined pattern based simulations for each training image can be used to group and then simulate patterns in the data gaps. Further, the one or more set of measured data can be from the group consisting of one of logging data having multiple depths of investigation, logging-while-drilling data, wireline logging data or some combination thereof.
According to aspects of the invention, the invention may include the constructed fullbore images includes plotting a digital file of the constructed fullbore images onto one of a digital media or hard copy media. Further, pattern based simulations can be use of filter scores. Further still, determining the filter scores for each training image can include a filtering process that uses the selected at least one pixel-based template as a filter that processes retrieved one or more set of measured data so as to detect training image patterns, then determines filter scores for each training image pattern. Further still, the training image patterns may be patterns of pixel associations within the training images that provide filter scores to the neighborhoods around each measured pixel. It is possible that the training images can be oriented as two-dimensional (2D) scalar arrays of continuously variable numerical values. Further, the one or more logged borehole length can be one of equal to or less than 1 foot, between 1 to 3 feet, or greater than 3 feet. Further still, constructing the fullbore images from successive, adjacent training images may include overlapping each adjacent selected depth-defined intervals of the borehole imaging log. Further, the fullbore image that has been processed using MPS modeling can allow for a drawing of closed contours around one of at least one dark color patch or at least one light color patch in the borehole images.
According to aspects of the invention, the invention may include the at least one dark color patch that represents one of electrically non-resistive regions, minimal amplitude of reflected acoustic waves, substantial travel time of reflected acoustic waves, minimal formation density, or some combination thereof. Further, the at least one light color patch may represent one of electrically resistive regions, substantial amplitude of reflected acoustic waves, minimal travel time of reflected acoustic waves, substantial formation density or some combination thereof.
According to embodiments of the invention, the invention may include a method using a multi-point geostatistical model for characterizing a geological formation traversed by a borehole. The method includes: (a) retrieving a set of measured data provided by at least one tool along depth-defined intervals of the borehole in order to produce a borehole imaging log; (b) selecting depth-defined intervals of the borehole imaging log as training images for inputting in a multi-point geostatistical model; (c) determining filter scores for each training image using a pixel-based template of the multi-point geostatistical model so as to obtain training image patterns; (d) classifying training image patterns based on their filter scores; (e) constructing from the training image patterns one or more fullbore image log of a borehole wall from the subterranean area; and (f) repeat steps (b) to (e) through the depth-defined intervals of the borehole in order to construct fullbore images from successive, adjacent training images.
According to aspects of the invention, the invention may include the one or more set of measured data being from the group consisting of one of logging data having multiple depths of investigation, logging-while-drilling data, wireline logging data or some combination thereof. Further, pattern based simulations may be used as filter scores. Further still, determining the filter scores for each training image may include a filtering process that uses the selected at least one pixel-based template as a filter that processes retrieved one or more set of measured data so as to detect training image patterns, then determines filter scores for each training image pattern. It is possible constructing the fullbore images from successive, adjacent training images can include overlapping each adjacent selected depth-defined intervals of the borehole imaging log.
According to embodiments of the invention, the invention may include a storage device readable by a machine and storing a set of instructions executable by the machine to perform method steps for characterizing a geological formation traversed by a borehole. The method includes: (a) retrieving a set of measured data provided by at least one oilfield application tool along depth-defined intervals of a reservoir in order to produce a borehole imaging log; (b) selecting depth-defined intervals of the borehole imaging log as training images for inputting in a multi-point geostatistical model; (c) determining filter scores for each training image using a pixel-based template of the multi-point geostatistical model so as to obtain training image patterns; (d) classifying training image patterns based on their filter scores; (e) constructing from the training image patterns one or more fullbore image log of a borehole wall from the reservoir; and (f) repeat steps (b) to (e) through the depth-defined intervals of the reservoir in order to construct fullbore images from successive, adjacent training images.
According to embodiments of the invention, the invention may include a method for characterizing a geological formation. The method includes: (a) retrieving one or more set of measured data provided by at least one tool along one or more geological area in order to produce at a portion of a complete geological image; (b) selecting defined intervals of the portion of the geological image as training images for inputting in a multi-point geostatistical model; (c) determining pattern based simulations for each training image using at least one pixel-based template of the multi-point geostatistical model so as to obtain training image patterns; (d) constructing from the training image patterns one or more complete geological image of the geological area; and (f) repeat steps (b) to (d) through the one or more geological area in order to construct complete geological images from successive, adjacent training images.
Additional advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.
The application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.
The present invention is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:
It will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that certain dimensions, features, components, and the like in the figures may have been enlarged, distorted or otherwise shown in a non-proportional or non-conventional manner to facilitate a better understanding of the technology disclosed herein.
The following description provides exemplary embodiments only, and is not intended to limit the scope, applicability, or configuration of the disclosure. Rather, the following description of the exemplary embodiments will provide those skilled in the art with an enabling description for implementing one or more exemplary embodiments. It being understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention as set forth in the appended claims.
Specific details are given in the following description to provide a thorough understanding of the embodiments. However, it will be understood by one of ordinary skill in the art that the embodiments may be practiced without these specific details. For example, systems, processes, and other elements in the invention may be shown as components in block diagram form in order not to obscure the embodiments in unnecessary detail. In other instances, well-known processes, structures, and techniques may be shown without unnecessary detail in order to avoid obscuring the embodiments.
Also, it is noted that individual embodiments may be described as a process which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process may be terminated when its operations are completed, but could have additional steps not discussed or included in a figure. Furthermore, not all operations in any particularly described process may occur in all embodiments. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination corresponds to a return of the function to the calling function or the main function.
Furthermore, embodiments of the invention may be implemented, at least in part, either manually or automatically. Manual or automatic implementations may be executed, or at least assisted, through the use of machines, hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware or microcode, the program code or code segments to perform the necessary tasks may be stored in a machine readable medium. A processor(s) may perform the necessary tasks.
As explained earlier, electrical borehole images in water-based (conductive) and oil-based (non-conductive) muds are generated from electrodes arranged in fixed patterns on pads that are pressed against the borehole wall. Depending on the borehole diameter, gaps nearly always occur between the pads. Because of these gaps, it is common to have non-imaged parts of the borehole wall.
Fullbore Images are complete, 360-degree views of the borehole wall. The method according to the invention allows generating fullbore images by “filling in the gaps” between the pads of borehole-image logs. One exemplary embodiment of the method uses the FILTERSIM algorithm of multi-point statistics (MPS) to generate models or realizations. This exemplary algorithm is described in Zhang (Zhang T., Switzer P., and Journel A., 2006, Filter-based classification of training image patterns for spatial pattern simulation: Mathematical Geology, v. 38, p. 63-80). Measured (incomplete) borehole images themselves are used as “training images.” Recorded data are perfectly honoured, i.e., the models are conditioned to the real data. Gaps are filled with patterns similar to those seen elsewhere in the log. Patterns in the gaps match the edges of the pads. The frequency distribution of continuously variable pixel colours in the gaps matches the distribution of pixel colours in the measured images. According to an aspect of the invention, the seminal idea lies in the use of training image: we directly use the data themselves [in fullbore creation, it is the original 2D incomplete image (continuous variable training image) that has >60% coverage of the entire region, while in the pseudocore reconstruction, the Catscan digital core is directly used as a 3D training image that is combined later with the fullbore image data]. Hence, the entire process of applying MPS becomes data-driven. This advantage should be stressed in our patent memo and provisions.
The fullbore images, as provided according to the method of the invention, facilitate visualization and interpretation of borehole-image logs. They can be used to draw closed contours around electrically resistive or non-resistive patches in the borehole wall (see
The method according to the invention aims at generating fullbore images from electrical borehole-imaging logs. In one non limiting exemplary embodiment of the invention, the method includes the following steps:
In order to perform MPS simulation, the training images must be stationary. However, in most reservoir modeling applications, the geological sediments show non-stationary patterns/features, which reflect the reservoir heterogeneities and anisotropies of sedimentation.
Therefore, according to the invention, the training image that will be selected represents a depth-defined interval of the borehole-image log. For example, this interval could be 1, 3, or 10 ft (0.3, 1, or 3 m) of measured depth. The user may want to choose a thick or thin interval, depending on the observed amount of layering, fracturing, and other heterogeneous patterns.
For illustration, the pixel-based, user-defined 3×3 template 8 as showed at the bottom of
Determine Filter Scores Using a Suitable Template
Once the training image is selected, the method will determine filter scores to categorize and classify the observed patterns. To do this, the human user of the method according to the invention chooses a suitable template. For example, the template could be 3×3, 3×10, or 9×9 pixels. This template is used as a filter that moves through the measured data and records all possible patterns and assigns scores to them for further classification and simulation.
Generate Fullbore Image Realizations
Once filter scores are determined for each training image using a suitable pixel-based template, the method according to the invention uses these filter scores to group and then simulate patterns in the gaps between the pads, where no measured data exist. The approach for a single realization is to randomly occupy pixel locations, and draw from the set of filter scores to choose a suitable pattern for the random site. Measured data are perfectly honoured, because these are conditional simulations. Patterns adjacent to the edges of pads match the patterns observed on the actual pads. The frequency distribution of modeled pixel colours, a continuous variable, perfectly matches the frequency distribution of measured colours.
Generate Continuous Fullbore Images Through the Entire Logged Interval
Sharp boundaries are undesirable when they occur between modeled fullbore images. Therefore, in an embodiment of the method according to the invention, it is possible to model adjacent depth-defined intervals with some amount of overlap. For example, the method according to the invention allows the human user to choose a 20% overlap between a modeled interval and the next interval up or down the hole. The results from the previously modeled interval are considered to be fixed or “hard” data, and the newly modeled interval is conditioned to match the “hard” data.
As described in Delhomme (Delhomme, J. P., 1992, A quantitative characterization of formation heterogeneities based on borehole image analysis: Trans. 33rd Symposium SPWLA, Paper T.) or Hassall et al. (Hassall, J. K., Ferraris, P., Al-Raisi, M., Hurley, N. F., Boyd, A., and Allen, D. F., 2004, Comparison of permeability predictors from NMR, formation image and other logs in a carbonate reservoir: SPE preprint 88683, presented at the 11th Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, U.A.E., 10-13 October) the importance of mapping electrically resistive and non-resistive patches in borehole images has been acknowledge. However, the approaches described in these publications are unsatisfactory because of gaps between the pads. Furthermore, these prior art approaches were unable to draw closed contours around regions of high or low resistivity because of uncertainty about the shapes.
As represented on
Furthermore, it is quite often that one or more pads or electrodes on the logging tool provide poor-quality images. This can be caused by uneven pad pressure, borehole irregularities and washouts, electronic problems, or contamination by crushed rock materials.
There have been described and illustrated herein a computer-based method for modeling full borehole images from the training images acquired with a logging tool. The most common applications of this method is for the modeling of geological properties for petroleum geology and reservoir simulation, groundwater hydrology, CO2 sequestration, geological outcrop modeling, among others. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Particularly, acquisition of the measured data can be made with any kind of wireline, LWD, MWD tool. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as claimed. Any other feature/pattern-based approach that is different from FILTERSIM algorithm described in this prevision could be used to fill-in the gaps of the image logs.
Number | Name | Date | Kind |
---|---|---|---|
3013467 | Minsky | Dec 1951 | A |
3406776 | Henry | Oct 1968 | A |
3469311 | Van Benthuysen et al. | Sep 1969 | A |
4079421 | Kermisch | Mar 1978 | A |
4124302 | Kuzmin | Nov 1978 | A |
4480921 | Leveque et al. | Nov 1984 | A |
4483619 | Leveque et al. | Nov 1984 | A |
4555181 | Klumper et al. | Nov 1985 | A |
4567759 | Ekstrom et al. | Feb 1986 | A |
4702607 | Kinameri | Oct 1987 | A |
4734578 | Horikawa | Mar 1988 | A |
4750888 | Allard et al. | Jun 1988 | A |
4758088 | Doyle | Jul 1988 | A |
4783751 | Ehrlich et al. | Nov 1988 | A |
4821164 | Swanson | Apr 1989 | A |
4863252 | McCarthy et al. | Sep 1989 | A |
4868883 | Chen | Sep 1989 | A |
4877960 | Messerschmidt et al. | Oct 1989 | A |
4912683 | Katahara | Mar 1990 | A |
4927254 | Kino et al. | May 1990 | A |
4972258 | Wolf et al. | Nov 1990 | A |
4997242 | Amos | Mar 1991 | A |
5022743 | Kino et al. | Jun 1991 | A |
5032720 | White | Jul 1991 | A |
5144477 | White | Sep 1992 | A |
5162941 | Favro et al. | Nov 1992 | A |
RE34214 | Carlsson et al. | Apr 1993 | E |
5200705 | Clark et al. | Apr 1993 | A |
5220403 | Batchelder et al. | Jun 1993 | A |
5233568 | Kan et al. | Aug 1993 | A |
5239178 | Derndinger et al. | Aug 1993 | A |
5283684 | Thomas et al. | Feb 1994 | A |
5289407 | Strickler et al. | Feb 1994 | A |
5334830 | Fukuyama et al. | Aug 1994 | A |
5356110 | Eddy | Oct 1994 | A |
5384806 | Agazzi | Jan 1995 | A |
5463897 | Prater et al. | Nov 1995 | A |
5479252 | Worster et al. | Dec 1995 | A |
5537247 | Xiao | Jul 1996 | A |
5557452 | Harris | Sep 1996 | A |
5560244 | Prater et al. | Oct 1996 | A |
5587832 | Krause | Dec 1996 | A |
5659420 | Wakai et al. | Aug 1997 | A |
5675443 | Dorsel | Oct 1997 | A |
5713364 | DeBaryshe et al. | Feb 1998 | A |
5714682 | Prater et al. | Feb 1998 | A |
5777342 | Baer | Jul 1998 | A |
5809163 | Delhomme et al. | Sep 1998 | A |
5813987 | Modell et al. | Sep 1998 | A |
5814820 | Dong et al. | Sep 1998 | A |
5835883 | Neff et al. | Nov 1998 | A |
5838634 | Jones et al. | Nov 1998 | A |
5866911 | Baer | Feb 1999 | A |
5887009 | Mandella et al. | Mar 1999 | A |
5923465 | Byrd | Jul 1999 | A |
5923466 | Krause et al. | Jul 1999 | A |
5939709 | Ghislain et al. | Aug 1999 | A |
5952668 | Baer | Sep 1999 | A |
6009065 | Glushko et al. | Dec 1999 | A |
6011557 | Keskes et al. | Jan 2000 | A |
6025985 | Leytes et al. | Feb 2000 | A |
6033100 | Marquiss et al. | Mar 2000 | A |
6071748 | Modlin et al. | Jun 2000 | A |
6088656 | Ramakrishnan et al. | Jul 2000 | A |
6097025 | Modlin et al. | Aug 2000 | A |
6098031 | Svetkoff et al. | Aug 2000 | A |
6104945 | Modell et al. | Aug 2000 | A |
6125079 | Birchak | Sep 2000 | A |
6133986 | Johnson | Oct 2000 | A |
6148114 | Han | Nov 2000 | A |
6159425 | Edwards et al. | Dec 2000 | A |
6177998 | Svetkoff et al. | Jan 2001 | B1 |
6181425 | Svetkoff et al. | Jan 2001 | B1 |
6185030 | Overbeck | Feb 2001 | B1 |
6187267 | Taylor et al. | Feb 2001 | B1 |
6201639 | Overbeck | Mar 2001 | B1 |
6248988 | Krantz | Jun 2001 | B1 |
6249347 | Svetkoff et al. | Jun 2001 | B1 |
6259104 | Baer | Jul 2001 | B1 |
6287595 | Loewy et al. | Sep 2001 | B1 |
6288782 | Worster et al. | Sep 2001 | B1 |
6297018 | French et al. | Oct 2001 | B1 |
6309948 | Lin et al. | Oct 2001 | B1 |
6313960 | Marquiss et al. | Nov 2001 | B2 |
6316153 | Goodman et al. | Nov 2001 | B1 |
6317207 | French et al. | Nov 2001 | B2 |
6326605 | Modlin et al. | Dec 2001 | B1 |
6335824 | Overbeck | Jan 2002 | B1 |
6366357 | Svetkoff et al. | Apr 2002 | B1 |
6385484 | Nordstrom et al. | May 2002 | B2 |
6411838 | Nordstrom et al. | Jun 2002 | B1 |
6452686 | Svetkoff et al. | Sep 2002 | B1 |
6466316 | Modlin et al. | Oct 2002 | B2 |
6469311 | Modlin et al. | Oct 2002 | B1 |
6483582 | Modlin et al. | Nov 2002 | B2 |
6488892 | Burton et al. | Dec 2002 | B1 |
6498335 | Modlin et al. | Dec 2002 | B2 |
6499366 | Meadows et al. | Dec 2002 | B1 |
6516080 | Nur | Feb 2003 | B1 |
6545264 | Stern | Apr 2003 | B1 |
6548796 | Silvermintz et al. | Apr 2003 | B1 |
6548810 | Zaluzec | Apr 2003 | B2 |
6576476 | Taylor et al. | Jun 2003 | B1 |
6657216 | Poris | Dec 2003 | B1 |
6661515 | Worster et al. | Dec 2003 | B2 |
6710316 | Mandella et al. | Mar 2004 | B2 |
6713742 | Mandella et al. | Mar 2004 | B2 |
6713772 | Goodman et al. | Mar 2004 | B2 |
6714682 | Kaneda | Mar 2004 | B2 |
6750974 | Svetkoff et al. | Jun 2004 | B2 |
6756202 | Dorsel et al. | Jun 2004 | B2 |
6760613 | Nordstrom et al. | Jul 2004 | B2 |
6768918 | Zelenchuk | Jul 2004 | B2 |
6791690 | Corson et al. | Sep 2004 | B2 |
6816787 | Ramamoorthy et al. | Nov 2004 | B2 |
6818903 | Schomacker et al. | Nov 2004 | B2 |
6821787 | Neilson et al. | Nov 2004 | B2 |
6825921 | Modlin et al. | Nov 2004 | B1 |
6826422 | Modell et al. | Nov 2004 | B1 |
6826520 | Khan et al. | Nov 2004 | B1 |
6835574 | Neilson et al. | Dec 2004 | B2 |
6839661 | Costa et al. | Jan 2005 | B2 |
6844123 | Ekberg et al. | Jan 2005 | B1 |
6845325 | Valero et al. | Jan 2005 | B2 |
6847460 | Farrell et al. | Jan 2005 | B2 |
6847490 | Modell et al. | Jan 2005 | B1 |
6864097 | Schembri et al. | Mar 2005 | B1 |
6876781 | Khoury | Apr 2005 | B2 |
6883158 | Sandstrom et al. | Apr 2005 | B1 |
6886632 | Raghuraman et al. | May 2005 | B2 |
6897405 | Cheng et al. | May 2005 | B2 |
6902935 | Kaufman et al. | Jun 2005 | B2 |
6903347 | Baer | Jun 2005 | B2 |
6913603 | Knopp et al. | Jul 2005 | B2 |
6917468 | Thomas | Jul 2005 | B2 |
6933154 | Schomacker et al. | Aug 2005 | B2 |
6937023 | McElhinney | Aug 2005 | B2 |
6942873 | Russell et al. | Sep 2005 | B2 |
6943968 | Nielson et al. | Sep 2005 | B2 |
6952668 | Kapilow | Oct 2005 | B1 |
6982431 | Modlin et al. | Jan 2006 | B2 |
6987570 | Schmit et al. | Jan 2006 | B1 |
6991765 | Neilson et al. | Jan 2006 | B2 |
6992761 | Modlin et al. | Jan 2006 | B2 |
7005306 | Poris | Feb 2006 | B1 |
7018842 | Dorsel et al. | Mar 2006 | B2 |
7042647 | Lo | May 2006 | B2 |
7045362 | Hartwich et al. | May 2006 | B2 |
7068583 | Khoury | Jun 2006 | B2 |
7071477 | Baer | Jul 2006 | B2 |
7075100 | Saccomanno et al. | Jul 2006 | B2 |
7092107 | Babayoff et al. | Aug 2006 | B2 |
7103401 | Schomacker et al. | Sep 2006 | B2 |
7127282 | Nordstrom et al. | Oct 2006 | B2 |
7133779 | Tilke et al. | Nov 2006 | B2 |
7136518 | Griffin et al. | Nov 2006 | B2 |
7140119 | Badami et al. | Nov 2006 | B2 |
7154605 | Worster et al. | Dec 2006 | B2 |
7158228 | Psaltis et al. | Jan 2007 | B2 |
7187810 | Clune et al. | Mar 2007 | B2 |
7187816 | Huang | Mar 2007 | B2 |
7199882 | Svetkoff et al. | Apr 2007 | B2 |
7205553 | Dorsel et al. | Apr 2007 | B2 |
7224162 | Proett et al. | May 2007 | B2 |
7230725 | Babayoff et al. | Jun 2007 | B2 |
7251398 | Baets et al. | Jul 2007 | B2 |
7260248 | Kaufman et al. | Aug 2007 | B2 |
7262889 | Sun et al. | Aug 2007 | B2 |
7280203 | Olschewski | Oct 2007 | B2 |
7309867 | Costa et al. | Dec 2007 | B2 |
7310547 | Zelenchuk | Dec 2007 | B2 |
7312919 | Overbeck | Dec 2007 | B2 |
7324710 | Andersson et al. | Jan 2008 | B2 |
7330273 | Podoleanu et al. | Feb 2008 | B2 |
7345975 | Fadeyev et al. | Mar 2008 | B2 |
7363158 | Stelting et al. | Apr 2008 | B2 |
7365858 | Fang-Yen et al. | Apr 2008 | B2 |
7376068 | Khoury | May 2008 | B1 |
7384806 | Worster et al. | Jun 2008 | B2 |
7444616 | Sandstrom et al. | Oct 2008 | B2 |
7474407 | Gutin | Jan 2009 | B2 |
7483152 | Jovancicevic et al. | Jan 2009 | B2 |
7516055 | Strebelle | Apr 2009 | B2 |
7538879 | Power | May 2009 | B2 |
7545510 | Lee et al. | Jun 2009 | B2 |
7557581 | Ostermeier | Jul 2009 | B2 |
7630517 | Mirowski et al. | Dec 2009 | B2 |
7718351 | Ying et al. | May 2010 | B2 |
7765091 | Lee et al. | Jul 2010 | B2 |
7783462 | Landis, Jr. et al. | Aug 2010 | B2 |
7933757 | Awwiller | Apr 2011 | B2 |
8045153 | Mimura et al. | Oct 2011 | B2 |
8095349 | Kelkar et al. | Jan 2012 | B2 |
8311788 | Hurley et al. | Nov 2012 | B2 |
8900508 | Shin et al. | Dec 2014 | B2 |
8908925 | Hurley et al. | Dec 2014 | B2 |
20020031477 | Loewy et al. | Mar 2002 | A1 |
20050002319 | Fadeyev et al. | Jan 2005 | A1 |
20050010799 | Kelley et al. | Jan 2005 | A1 |
20050057756 | Fang-Yen et al. | Mar 2005 | A1 |
20050105097 | Fang-Yen et al. | May 2005 | A1 |
20050128488 | Yelin et al. | Jun 2005 | A1 |
20050192966 | Hilbert et al. | Sep 2005 | A1 |
20050202660 | Cohen et al. | Sep 2005 | A1 |
20050213430 | Jovancicevic et al. | Sep 2005 | A1 |
20050231727 | Podoleanu et al. | Oct 2005 | A1 |
20050235507 | Badami et al. | Oct 2005 | A1 |
20060038571 | Ostermeier et al. | Feb 2006 | A1 |
20060041410 | Strebelle | Feb 2006 | A1 |
20060045421 | Baets et al. | Mar 2006 | A1 |
20060102486 | Bentley et al. | May 2006 | A1 |
20060126991 | Huang | Jun 2006 | A1 |
20060132790 | Gutin | Jun 2006 | A1 |
20060136419 | Brydon et al. | Jun 2006 | A1 |
20060141617 | Desai et al. | Jun 2006 | A1 |
20060193777 | Southall et al. | Aug 2006 | A1 |
20060238842 | Sun et al. | Oct 2006 | A1 |
20060256343 | Choma et al. | Nov 2006 | A1 |
20070014435 | Mirowski et al. | Jan 2007 | A1 |
20070165241 | Laguart Bertran et al. | Jul 2007 | A1 |
20070203677 | Awwiller | Aug 2007 | A1 |
20070213942 | Ponson et al. | Sep 2007 | A1 |
20070216989 | Nerin et al. | Sep 2007 | A1 |
20070239359 | Stelting et al. | Oct 2007 | A1 |
20070265813 | Unal et al. | Nov 2007 | A1 |
20080057479 | Grenness | Mar 2008 | A1 |
20080123106 | Zeng et al. | May 2008 | A1 |
20080218850 | Power | Sep 2008 | A1 |
20080266548 | Lee et al. | Oct 2008 | A1 |
20090062496 | Shaffer et al. | Mar 2009 | A1 |
20090104549 | Sandstrom et al. | Apr 2009 | A1 |
20090114544 | Rousseau et al. | May 2009 | A1 |
20090164182 | Pedersen et al. | Jun 2009 | A1 |
20090259446 | Zhang et al. | Oct 2009 | A1 |
20090262603 | Hurley | Oct 2009 | A1 |
20090299714 | Kelkar et al. | Dec 2009 | A1 |
20100155142 | Thambynayagam et al. | Jun 2010 | A1 |
20100299125 | Ding et al. | Nov 2010 | A1 |
20100326669 | Zhu et al. | Dec 2010 | A1 |
20110004446 | Dorn et al. | Jan 2011 | A1 |
20110004447 | Hurley | Jan 2011 | A1 |
20110004448 | Hurley et al. | Jan 2011 | A1 |
20110015907 | Crawford et al. | Jan 2011 | A1 |
20110181701 | Varslot et al. | Jul 2011 | A1 |
20120275658 | Hurley et al. | Nov 2012 | A1 |
20120277996 | Hurley et al. | Nov 2012 | A1 |
20120281883 | Hurley et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
101802649 | Aug 2010 | CN |
102004043992 | Mar 2006 | DE |
200701136 | Aug 2008 | EA |
0147316 | Dec 1983 | EP |
0114726 | Aug 1984 | EP |
1098166 | May 2001 | EP |
1630578 | Mar 2006 | EP |
1630578 | Mar 2006 | EP |
1739471 | Jan 2007 | EP |
1739471 | Jan 2007 | EP |
1805477 | Jul 2007 | EP |
2056381 | May 2009 | EP |
2439778 | Jan 2008 | GB |
2166630 | May 2001 | RU |
2289829 | Dec 2006 | RU |
0041006 | Jul 2000 | WO |
0041006 | Jul 2000 | WO |
0107891 | Feb 2001 | WO |
0173431 | Oct 2001 | WO |
2004046337 | Jun 2004 | WO |
2005001445 | Jan 2005 | WO |
2005052220 | Jun 2005 | WO |
2005054780 | Jun 2005 | WO |
2005077255 | Aug 2005 | WO |
2005085804 | Sep 2005 | WO |
2005096061 | Oct 2005 | WO |
2005103827 | Nov 2005 | WO |
2005108911 | Nov 2005 | WO |
2005108965 | Nov 2005 | WO |
2006021205 | Mar 2006 | WO |
2006042696 | Apr 2006 | WO |
2006065772 | Jun 2006 | WO |
2006069443 | Jul 2006 | WO |
2006078839 | Jul 2006 | WO |
2006105579 | Oct 2006 | WO |
2006116231 | Nov 2006 | WO |
2006120646 | Nov 2006 | WO |
2007007052 | Jan 2007 | WO |
2008000078 | Jan 2008 | WO |
2008078096 | Jul 2008 | WO |
2008078099 | Jul 2008 | WO |
2008099174 | Aug 2008 | WO |
2008125869 | Oct 2008 | WO |
2008129233 | Oct 2008 | WO |
2008147280 | Dec 2008 | WO |
2009046181 | Apr 2009 | WO |
2009155127 | Dec 2009 | WO |
Entry |
---|
Zhang, “3D Porosity Medeling of Carbonate Reservoir using Continuous Multiple-point Statistics Simulation”, SPE Annual Technical Conference and Exhibition, Oct. 9-12, 2005. |
Zhang, “3D Porosity Modeling of a Carbonate Reservoir using Continuous Multiple-Point Statistics Simulation”, SPE Annual Technical Conference and Exhibition, Oct. 9-12, 2005. |
Zhang, “3D Porosity Modeling of a Carbonite Reservoir using continuous Multiple-point Statistics Simulation”SPE Annual Technical Conference and Exhibition, Oct. 9-12 2005. |
Zhang, “Filter based Classification of training image Patterns for Spatial Simulation”, Mathematical Geology, vol. 38, No. 1, Jan. 2006. |
Zhang “3D Porosity Modeling of a Carbonate Reservoir using Continuous Multiple-Point Statistics Simulation”, SPE Annual Technical Conference and Exhibition, Oct. 9-12 2005. |
Schlumberger, “Formation MicroScanner Image Interpretation”, 1989. |
Zhang, et al, “Models and methods for determining transport properties of touching-vug carbonates” SPE 96027, presented at the SPE Annual Technical Conference and Exhibition, Dallas, TX, Oct. 9-12, 2005, 9 pages. |
Zhang, et al, “3D porostly modeling of a carbonate reservoir using continuous multiple-point statistics simulation” SPE Journal vol. 11, Sep. 2006, pp. 375-379. |
Zhang, T. 2006a, “Filter-based training image pattern classification for spatial pattern simulation” PhD dissertation, Stanford University, Palo Alto, CA, Mar. 2006, 153 pages. |
Zhang, et al, 2006b, “Filter-based classification of training image patterns for spatial pattern simulation” Mathematical Geology, vol. 38, No. 1, pp. 63-80. |
Zhang, T. “Incorporating geological conceptual models and interpretations into reservoir modeling using multi-point geostatistics” Earth Science Frontiers, vol. 15, No. 1, Jan. 2008, pp. 26-35. |
Zhang, et al, “Numerical modeling of heterogeneous carbonated and multi-scale dynamics” Presented at the SPWLA 50th Annual Logging Symposium, The Woodlands, Texas, Jun. 21-24, 2009, 12 pages. |
Zulderveld, K, “Contrast limited adaptive histograph equalization” in Heckbert, P. S., Graphic Gems IV, San Diego: Academic Press Professional, 1994, pp. 474-485. |
Pizer, et al, “Adaptive histogram equalization and its variations” Computer Vision, Graphics and Image Processing, vol. 39, No. 3, 1987, pp. 355-368. |
Prebisch, et al, “Globally optimal stitching of tiled 3D microscopic image acquisitions” Bioinformatics Advance Access, vol. 25, No. 11, Apr. 2009, 3 pages. |
Prodanovic, et al, “Porous structure and fluid partioning in polyethylene cores from X-ray microtomographic imaging” Journal of Colloid and interface Science, vol. 298, 2005, pp. 282-297. |
Pyrcz, et al, “The whole story on the hole effect”, in Serston, S. (ed.) Geostatistical Association of Australasia, Newsletter 18, May 2003, 16 pages. |
Qi, D., Upscaling theory and application techniques for reservoir simulation: Lambert Academic Publishing, Saarbrucken, Germany, 2009, 7 pages. |
Ramakrishnan, et al., “A petrophysical and petrographic study of carbonate cores from the Thamama formation” SPE 49502, presented at the 8th Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, U.A.E., Oct. 11-14, 1998, 14 pages. |
Ramamoorthy, et al, “A new workflow for petrophysical and textural evaluation of carbonated reservoirs” Paper B presented at the SPWLA 49th Annual Logging Symposium, Edinburgh, Scotland, May 25-26, 2008, 15 pages. |
Reid, et al, “Monterey Formation porcelantle reservoirs of the Elk Hills field, Kern County, California” AAPG Bulletin, vol. 85, No. 1, Jan. 2001, pp. 169-189. |
Ribes, et al, “Applications of confocal macroscope-microscope luminescence imaging to sediment cores” New Techniques in Sediment Core Analysis: Geological Society of London, Special Publication vol. 267, 2006, pp. 141-150. |
Roerdink, et al, “The watershed transform: Definitions, algorithms and parallelization stratetegies” Fundamenta Informaticae, vol. 41, 2001, pp. 187-226. |
Russell, et al, “Rock types and permeability prediction from dipmeter and image logs: Shualba reservoir (Aptian), Abu Dhabi” AAPG Bulletin, vol. 86, No. 10, Oct. 2002, pp. 1709-1732. |
Sahoo, et al, “A survey of thresholding techniques” Computer Vision, Graphics, and Image Processing, vol. 41, No. 2, 1986, pp. 233-260. |
Sattykov, “The determination of the size distribution of particles in a opaque material from a measurement of size distribution of their sections” In Ellas, H (ed) Stereology: Proc. Second Int. Cong. for Stereology, New York: Springer-Verlag, 1967, pp. 163-173. |
Schlumberger, “Stratigraphic high resolution dipmeter tool” Schlumberger Ltd., Paris, Document No. M-08630, 1983, 26 pages. |
Sedsim, 2010, https://wiki.csiro.au/confluence/display/seabedchange/Home, accessed Oct. 10, 2 pages. |
Sezgin, et al, “Survey over image thresholding techniques and quantitative performace evaluation” Journal of Electronic Imaging, vol. 13, No. 1, Jan. 2004, pp. 146-165. |
Siddiquil, et al, “Data visualization challenges for displaying laboratory core and flow data in three-dimensions” SPE 106334, presented at the SPE Technical Symposium of Saudi Arabia, May 14-16, 2005, 9 pages. |
Siddiqull, et al, “Techniques for extracting reliable density and porosity data from cultings” SPE 96918, presented at the SPE Annual Technical Conference and Exhibition, Dallas, TX, Oct. 9-12, 2005, 13 pages. |
Solymar, et al, “Image analysis and estimation of porosity and permeability of Amager Greensand, Upper Cretaceous, Denmark” Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, vol. 24, No. 7, 1999, pp. 587-591. |
Strebelle, “Conditional simulation of complex geological structures using multiple point statistics” Mathematical Geology, vol. 34, No. 1, Jan. 2002, pp. 1-21. |
Strebelle, et al, “Modeling of a deepwater turbidlte reservoir conditional to seismic data using principle component analysis and multiple-point geostatistics” SPE Journal, Sep. 2003, pp. 227-235. |
Strebelle, et al, “Non-stationary multiple-point geostatistical models”, In Leuangthong, O. and Deutsch, C. V., eds.: Geostatistics, vol. 1, 2004, pp. 235-244. |
Sulcmez, et al, “Pore network modeling: A new technology for SCAL predictions and interpretations” Saudi Arabia Oil and Gas, Issue 5, 2006 pp. 64-70. |
Taud, et al, “Porosity estimation method by x-ray computed tomography” Journal of Petroleum Science and Engineering, vol. 47, No. 3-4, 2005, pp. 209-217. |
Thomeer, “Introduction of a pore geometrical factor defined by the capillary pressure curve” Journal of Petroleum Technology, vol. 12, No. 3, Mar. 1960, pp. 73-77. |
Thompson, “Fractals in rock physics” Annual Review of Earth and Planetary Sciences, vol. 19, 1991, pp. 237-262. |
Tlike, et al, “Quantitative analysis of porosity heterogeneity: Application of geostatistics to borehole images” Mathematical Geology, vol. 38, No. 2, Feb. 2006, pp. 155-174. |
Tomutsa, et al, “Focused Ion beam assisted three-dimensional rock imaging at submicron scale” International Symposium of the Soc. of Core Analysis, Pau, France, Sep. 21-24, 2003, Paper SCA2003-47, 6 pages. |
Tomutsa, et al, “Analysis of chalk petrophysical properties by means of submicron-scale pore imaging and modeling” SPE Reservoir Evaluation and Engineering, vol. 10, Jun. 2007, pp. 285-293. |
Vahrenkamp, et al, Multi-scale heterogeneity modeling in a giant carbonate field, northern Oman (abs.): GeoArabia, vol. 13, No. 1, p. 248. |
Vincent, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, No. 6, Jun. 1991, pp. 583-598. |
Vinegar, “X-ray CT and NMR Imaging of rocks” JPT, Mar. 1986, pp. 257-259. |
Wardlaw, “Pore geometry of carbonate rocks as revealed by pore casts and capillary pressure” AAPG Bulletin, vol. 60, No. 2, Feb. 1976, pp. 245-257. |
Wardlaw et al, “The effects of pore structure on displacement efficiency in reservoir rocks and in glass micromodels”, SPE 8843, presented at the First Joint SPE/DOE Symposium on Enhanced Oil Recovery at Tulsa, Oklahoma, Apr. 20-23, 1980. |
Washburn, “The dynamics of capillary flow” Physical Review, vol. 17, No. 3, Mar. 1921, pp. 273-283. |
Wellington, et al, “X-ray computerized tomography” JPT, Aug. 1987, pp. 885-898. |
Wikipedia, 2010a, website http://en.wikipedia.org/wiki/Confocal—microscopy, accessed on Oct. 31. |
Wikipedia, 2010b, website http://en.wikipedia.org/wiki/Two-photon—excitation—mioroscopy, accessed on Oct. 23. |
Williams, et al, “Assessment and interpretation of electrical borehole images using numerical simulations” The Log Analyst, vol. 38, No. 6, Nov.-Dec. 1997, pp. 34-44. |
Withjack, et al, “The role of X-ray computed tomography in core analysis” SPE 83467, presented at the Western Region/AAPG Pacific Section Joint Meeting, Long Beach, CA, May 19-24, 2003, 12 pages. |
Wu, et al, “3D stochastic modeling of heterogeneous porous media—Applications to reservoir rocks” Transport in Porous Media, vol. 65, 2006, pp. 443-467. |
Wu, et al, “Validation of methods for multi-scale pore space reconstruction and their use in prediction of flow properties of carbonate” Paper SCA2008-34, International Symposium of the Society of Core Analysis, Abu Dhabi, Oct. 29-Nov. 2, 2008, 12 pages. |
Xiao, et al, “Fully integrated solution for LWD resistivity image application a case study from Belbu Gulf, China” 1st SPWLA India Regional Conference, Formation Evaluation in Horizontal Wells, Mumbai, Mar. 19-20, 2007, 10 pages. |
Ye, et al, “Automatic high resolution texture analysis on borehole imagery” Transactions of the SPWLA Annual Logging Symposium, May 1998, pp. M1-M14. |
Yuan, et al, “Resolving pore-space characteristics by rate-controlled porosimetry” SPE Formation Evaluation, vol. 4, No. 1, Mar. 1989, pp. 17-24. |
Zemanek, et al, “Formation evaluation by inspection with the borehole televiewer” Geophysics, vol. 35, No. 2, Apr. 1970, pp. 254-269. |
Zhang, et al, “Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV” Geophysical Research Letters, vol. 27, No. 8, Apr. 2000, pp. 1195-1196. |
Adams, et al, “Strategies for dipmeter interpretation” Part 2: The Technical Review, vol. 35, No. 4, 1987, pp. 20-31. |
Angulo, et al, “Fractal dimensions from mercury intrusion capillary tests” SPE 23695, Presented at the Second Latin American Petroleum Engineering Conference, Caracas, Venezuela, Mar. 8-11, 1992, pp. 255-263. |
Anselmetti, et al, “Quantitative characterization of carbonate pore systems by digital image analysis” AAPG Bulletin, vol. 82, No. 10, Oct. 1998, pp. 1815-1836. |
Bakke, et al, “3-D pore-scale modeling of sandstones and flow simulations in the pore networks” SPE 35479, vol. 2, European 3-D Reservoir Modeling Conference, held in Stavanger, Norway, Apr. 16-17, 1996, Jun. 1997, pp. 136-149. |
Bakke, et al, “Pore scale modeling of carbonate reservoir rocks” Downloaded from website http://www.numericalrocks.com, Mar. 30, 2008, 13 pages. |
Bear, J., “Dynamics of fluids in porous media” Elsevier, New York, pp. 13-26 and 38-57. |
Behseresht, et al, “Infinite-acting physically representative networks for capillary-controlled displacements” SPE 110581, presented at the SPE Annual Technical Conference and Exhibition, Anaheim, CA, Nov. 11-14, 2007, 15 pages. |
Bereskin, et al, “Carbonate microporosity: Recognizing its existence and understanding its role in hydrocarbon production”, In Dolly, E. D., and Mullarkey, J. C., eds., Hydrocarbon Production from Low Contrast, Low Resistivity Reservoirs, Rocky Mountain and Midcontinent Regions: Log Examples of Subtle Pays: Rocky Mountain Association of Geologists Guidebook, Denver, Colorado, 1996, pp. 33-42. |
Bigelow, “Making more intelligence use of log derived dip information. Part 1, Suggested guidelines” The Log Analyst, vol. 26, No. 1, pp. 41-53, 1985a. |
Bigelow “Making more intelligent use of log derived dip information. Part 2, Website data gathering considerations” The Log Analyst, vol. 26, No. 2, pp. 25-41, 1985b. |
Bigelow “Making more intelligent use of log derived dip information. Part 3, Computer processing considerations” The Log Analyst, vol. 26, No. 3, pp. 18-31, 1985c. |
Bigelow “Making more intelligent use of log derived dip information. Part 4, Structural interpretation” The Log Analyst, vol. 26, No. 4, pp. 21-43, 1985d. |
Bigelow “Making more intelligent use of log derived dip information. Part 5, Stratigraphic interpretation” The Log Analyst, vol. 26, No. 5, pp. 25-64, 1985e. |
Bosi, et al, “A study of porosity and permeability using a lattice Boltzmann simulation” Geophysical Research Letters, vol. 25, No. 9, May 1998, pp. 1475-1478. |
Bourke, “Core permeability imaging: It's relevance to conventional core characterization and potential application to wireline measurement” Marine and Petroleum Geology: vol. 10, Aug. 1993, pp. 318-324. |
Bryant, et al, “Physically representative network models of transport in porous media” American Institute of Chemical Engineers Journal, vol. 39, No. 3, Mar. 1993, pp. 387-396. |
Caers, et al, “Multiple-point geostatistics: A quantitative vehicle for integration of geologic analogs into multiple reservoir models”, In M. Grammer, P. M. Harris and G. P. Eberil, eds.: Integration of Outcrop and Modern Analogs in Reservoir Modeling, AAPG. Memoir 80, 2004, pp. 383-394. |
Cantrell, et al, “Microporosity in Arab Formation carbonates, Saudi Arabia” GeoArabia, vol. 4, No. 2, 1999, pp. 129-154. |
Chen, et al, “What is the shape of pores in natural rocks?” Journal of Chemical Physics, vol. 116, May 2002, pp. 8247-8250. |
Choquette, et al, “Geologic nomenclature and classification of porosity in sedimentary carbonates” AAPG Bulletin, vol. 54, No. 2, Feb. 1970, pp. 207-250. |
Christie, M. A., Upscaling for reservoir simulation: JPT, SPE 37324, vol. 48, No. 11, Nov. 1996, pp. 1004-1010. |
Clauset, et al, “Power-law distributions in empirical data” SIAM Review, vol. 51, No. 4, Feb. 2009, pp. 1-43. |
Clerke, “Permeability, relative permeability, microscopic displacement efficiency, and pore geometry of M—1 bimodal pore systems in Arab D limestone” SPE Journal, vol. 14, No. 3, 2009, 8 pages. |
Clerke, et al, “Application of Thomeer hyperbolas to decode the pore systems, facies and reservoir properties of the upper Jurassic Arab D limestone, Ghawar field, Saudi Arabia: A “Rosetta Stone” approach” GeoArabia, vol. 13, No. 4, 2008, pp. 113-116. |
Coles, et al, “Developments in synchrotron X-ray microtomography with applications to flow in porous media” SPE 35531, presented at the SPE Annual Technical Conference and Exhibition, Denver, CO, Oct. 6-9, 1996, pp. 413-424. |
Creusen, et al, “Property modeling small scale heterogeneity of carbonate facies” SPE 111451, Presented at Reservoir Characterization and Simulation Conference, Abu Dhabi, U.A.E., Oct. 28-31, 2007, 5 pages. |
Davis, et al, “Image analysis of reservoir pore system: State of the art in solving problems related to reservoir quality” SPE 19407, presented at the SPE Formation Damage Control Symposium, Lafayette, Louisiana, Feb. 22-23, 1990, pp. 73-82. |
Dehghani, et al, “Modeling a vuggy carbonate reservoir, McElroy Field, West Texas” AAPG Bulletin, vol. 83, No. 1, Jan. 1999, pp. 19-42. |
Delhomme, “A quantitative characterization of formation heterogeneities based on borehole image analysis” Trans. 33rd Symposium SPWLA, Paper T, Jun. 1992, 25 pages. |
Duey, R. “Quick analysis answers Heldrun question” Hart Energy Publishing, LP, accessed online at http://www.eandp.info/index2.php?area-article&articleid-767, Mar. 27, 2008, 4 pages. |
Durlofsky, “Upscaling of geocellular models for reservoir flow simulation: A review of recent progress” presented at the 7th International Forum on Reservoir Simulation, Buhi-Baden, Germany, Jun. 23-27, 2003, 58 pages. |
Dvorkin, et al, “Real time monitoring of permeability, elastic modull and strength in sands, and shales using Digital Rock Physics” SPE 82246, presented at the SPE European Formation Damage Conference, The Hague, Netherlands, May 13-14, 2003, 7 pages. |
Ehrich, et al, “Petrographic image analysis, I. Analysis of reservoir pore complexes” Journal of Sedimentary Petrology, vol. 54, No. 4, Dec. 1984, pp. 1365-1378. |
Fabbrl, “GIAPP: Geological image-analysis program package for estimating geometrical probabilities” Computer & Geosciences, vol. 6, No. 2, 1980, pp. 153-161. |
Fredrich, et al, “Imaging the pore structure of geomaterials” Science, vol. 268, Apr. 1996, pp. 276-279. |
Fredrich, “3D imaging of porous media using laser scanning confocal microsoopy with application to microscale transport processes” Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, vol. 24, No. 7, 1999, pp. 551-561. |
Fredrich, et al, “Predicting macroscopic transport properties using microscopic image data” Journal of Geophysical Research, vol. 111, 2006, 14 pages. |
Fredrich, et al, “Predicting petrophysical properties using 3D image data (abs.)” AAPG Annual Convention, downloaded at http://www.aapg.org, 2007. |
Gles, et al, “Petrographic image analysis: An effective technology for delineating reservoir quality” SPE 26147, presented at the SPE Gas Technology Symposium, Calgary, Alberta, Canada, Jun. 26-30, 1993, pp. 99-105. |
Gilreath, Strategies for dipmeter interpretation: Part I: The Technical Review, vol. 35, No. 3, 1987, pp. 28-41. |
Gomaa, et al, “Case study of permeability, vug quamtification, and rock typing in a complex carbonate” SPE 102888, presented at 81st Annual Technical Conference and Exhibition in San Antonio, Texas on Sep. 24-27, 2006, 11 pages. |
Grace, et al, “Geological applications of dipmeter and Borehole electrical images” Short Course Notes, Schlumberger Olifield Services, vol. 8.1, 1998, 32 pages. |
Greder, et al, “Determination of permeability distribution at log scale in vuggy carbonates” Paper BB, SPWLA 37th Annual Logging Symposium, Jun. 16-19, 1996, 14 pages. |
Guardiano, et al, “Multivariate geostatistics: Beyond bivarate moments” Geostatistics-Trola, A. Soares. Dordrecht, Netherlands, Kluwer Academic Publications, vol. 1, 1993, pp. 133-144. |
Harris, “Delineating and quantifying depositional facies patterns in carbonate reservoirs: insight from modern analogs” AAPG Bulletin, vol. 94, No. 1, Jan. 2010, pp. 61-66. |
Hartmann, et al, 1999, “Predicting Reservoir System Quality and Performance” in Beaumont E. A. and N.H. Foster, eds., AAPG Treatise of Petroleum Geology/Handbook of Petroleum Geology: Exploring for Oil and Gas Traps, Chapter 9, 1999, pp. 9-1 to 9-154. |
Hassail, et al, “Comparison of permeability predictors from NMR, formation image and other logs in a carbonate reservoir” SPE 88683, presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, U.A.E., Oct. 10-13, 2004, 13 pages. |
Hocker, et al, “Use of dipmeter data in clastic sedimentological studies” AAPG Bulletin, vol. 74, No. 2, Feb. 1990, pp. 105-118. |
Holt, “Particle vs. laboratory modeling in in situ compaction” Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, vol. 26, Issue 1-2, 2001, pp. 89-93. |
Hoshen, et al, “Percolation and cluster distribution—I. Cluster multiple labeling technique and critical concentration algorithm” Physcial Review B, vol. 14, No. 8, Oct. 15, 1976, pp. 3436-3445. |
Huang, et al, “Super-resolution fluorescence microscopy” Annual Review of Biochemistry, vol. 78, 2009, pp. 993-1016. |
Hurley, et al, “Quantification of vuggy porosity in a dolomite reservoir from borehole images and core, Dagger Draw Field, New Mexico” SPE 49323, presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, Sep. 27-30, 1998, 14 pages. |
Hurley, “Flow unit determination in a vuggy dolomite reservoir, Dagger Draw Field, New Mexico” SPWLA Transactions, presented at the SPWLA 40th Annual Logging Symposium, Oslo, Norway, May 30-Jun. 3, 1999, 14 pages. |
Hurley, “Borehole images” in Asqulth, G. and Krygowski, D.: Basic Well Log Analysis, 2nd Edition, AAPG Methods in Exploration Series No. 15, 2004, pp. 151-164. |
Hurley, et al, “Method to generate fullbore images using borehole images and multi-point statistics” SPE 120671-PP, presented at the Middle East Oil & Gas Show and Conference, Bahrain, Mar. 15-18, 2009, 18 pages. |
IReservoir, 2010, http://www.Ireservoir.com/case—jonah.html, accessed Oct. 10, 2 pages. |
Jackson, et al, “Upscaling permeability measurements within complex heterolithic tidal sandstones” Mathematical Geology, vol. 35, No. 5, Jul. 2003, pp. 499-520. |
Jackson, et al, “Three-dimensional reservoir characterization and flow simulation of heterolithic tidal sandstones” AAPG Bulletin, vol. 89, No. 4, Apr. 2005, pp. 507-528. |
Jennings, “Capillary pressure techniques: Application to exploration and development geology” AAPG Bulletin, vol. 71, No. 10, Oct. 1987, pp. 1195-1209. |
Kayser, et al, “Visualizing internal rock structures” Offshore, vol. 64, No. 8, Aug. 2004, pp. 129-131. |
Kayser, et al, “A closer look at pore geometry” Oilfield Review, vol. 18, No. 1, 2006, pp. 4-13. |
Knackstedt, et al, “Digital core laboratory: Properties of reservoir core derived from 3d images” SPE 87009, Presented at the Asia-Pacific Conference on Integrated Modeling for Asset Management, Mar. 29-30, 2004, 14 pages. |
Kuglin, et al, 1975, “The phase correlation image alignment method” Proceedings of the IEEE, International Conference on Cybernetics and Society, Palo Alto, CA, 1975, pp. 163-165. |
Kuwahara, et al, 1976, “Digital processing of biomedical images” Plenum Press, 1976, pp. 187-203. |
Kyprlanidis, et al, “Image and video abstraction by anisotropic kuwahara filtering” Pacific Graphics, vol. 26, No. 7, 2009, pp. 1955-1963. |
Lasseter, et al, “Reservoir heterogeneities and their influence on ultimate recovery” in Lake, L. W., and Carroll, H. B., Jr., eds., Reservoir Characterization: Academic Press, Orlando, Florida, 1986, pp. 545-559. |
Leduc, et al, “FMI” based sedimentary facles modeling, Surmont Lease (Athabasca, Canada) (abs.): CSPG Annual Convention, Calgary, Alberta, Canada, Jun. 3-7, 2002, 10 pages. |
Levy, et al, “Geomorphology of carbonate systems and reservoir modeling: Carbonate training images, FDM cubes, and MPS simulations” (abs.):AAPGAnnual Convention, Long Beach, California, Apr. 1-4, 2007a, http://searchanddiscovery.com/ documents /2008/08054levy/index.htm (accessed Jul. 15, 2008) 6 pages. |
Levy, et al, “Importance of facles-based earth models for understanding flow behavior in carbonate reservoirs” (abs.): AAPG Annual Convention, Long Beach, California, Apr. 1-4, 2007b, http://searchanddiscovery.com/documents/2008 /08097harris25a/index.htm (accessed Sep. 5, 2008) 25 pages. |
Li et al, “Investigation of the asphaltene precipitation process from Cold Lake bitumen by confocal scanning laser microscopy” SPE 30321, Presented at the International Heavy Oil Symposium, Calgary, Alberta, Canada, Jun. 19-21, 1995, pp. 709-716. |
Li, “Characterization of rock heterogenelty using fractal geometry” SPE 86975, Presented at SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting, Mar. 16-18, 2004, Bakersfield, California, 7 pages. |
Mandelbrot, “How is the coast of Britain? Statistical self-similarity and fractional dimesion” Science, vol. 156, 1967, pp. 636-638. |
Marrett et al, “Extent of power law scaling for natural fractures in rocks” Geology, vol. 27, No. 9, Sep. 1999, pp. 799-802. |
Marzouk et al “Geologic controls on wettability of carbonate reservoirs, Abu Dhabi, U.A.E.” SPE 29883, presented at the SPE Middle East Oil Show, Kingdom of Bahrain, Mar. 11-14, 1995, pp. 449-450. |
Mathis, et al, “From the geologists' eyes to synthetic core descriptions: Geological log modeling using well-log data (abs.)” AAPG Annual Meeting, Salt Lake City, UT, May 2003, 7 pages. |
Mell, B. Analytical report Nanovea—061213-21: Microphotonics internal report, Dec. 13, 2006, 10 pages. |
Menendez, et al, “Confocal scanning laser microscopy applied to the study of pore and crack networks in rocks” Computers & Geoscience, vol. 27, No. 9, 2001, pp. 1101-1109. |
Microphotonics, 2009, http://www.nanovea.com/Proflometers, html, accessed Mar. 30, 2 pages. |
Neal, et al, “Sequence stratigraphy—A global theory for local success” Oilfield Review, January Issue, 1993, pp. 51-62. |
Nikon, 2009, http://www.microscopyyu.com/articles/confocal/index.html, access on Mar. 30, 2 pages. |
Nix, et al, “New methods applied to the microstructure analysis of Messel Oil Shale: Confocal laser scanning microscopy (CLSM) and environmental scanning electron microscopy (ESEM)” Geology Magazine, vol. 140, No. 4, 2003, pp. 469-478. |
Norris, et al, “The geological modeling of effective permeability in complex heterolithic facles” SPE 22692, Presented at the 66th Annual Technical Conference and Exhibition, Dallas, TX, Oct. 6-9, 1991, pp. 359-374. |
O'Connor, et al, “Microscale flow modeling in geologic materials” Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, vol. 24, Issue 7, 1999, 9 pages. |
Okabe, et al, “Prediction of permeability for porous media reconstructed using multiple-point statistics” Physical Review E, vol. 70, 2004, pp. 066135-1-10. |
Okabe, et al, “Pore space reconstruction using multiple-point statistics” Journal of Petroleum Science and Engineering, vol. 46, 2005, pp. 121-137. |
Okabe, et al, “Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics” Water Resources Research, vol. 43, 2007, W12602, 5 pages. |
Okabe, et al, “Pore-scale heterogenity assessed by the lattice-Boltzmann method” International Symposium of the Soc. of Core Analysts, Trondhelm, Norway, Sep. 12-15, 2006 Paper SCA2006-44, 7 pages. |
Olympus, 2009a, http://www.olympusconfocal.com/theory/confocalintro.htm, accessed on Mar. 30. |
Olympus, 2009b, http://www.olympus-global.com/en/news/204a/nn040326ols3e.cfm , accessed on Mar. 30. |
Oren et al, “Extending Predictive Capabilities to Network Models”, SPE Journal Dec. 1998, pp. 324-336. |
Oren, et al, “Process based reconstruction of sandstones and prediction of transport properties” Transport in Porous Media, vol. 46, 2002, pp. 311-343. |
Paparl, et al, “Artistic edge and corner enhancing smoothing” IEEE Transactions on Image Processing, vol. 16, No. 10, Oct. 2007, pp. 2449-2462. |
Pelford, et al, 2001, “Investigation of the petrophysical properties of a porous sandstone using confocal scanning laser microscopy” Petroleum Geoscience, vol. 7, No. 2, 2001, pp. 99-105. |
Petromod, 2010, http://www.les.de/, accessed Oct. 10, 2 pages. |
Pittman, et al, “Use of pore casts and scanning electron microscope to study pore geometry” Journal of Sedementary Petrology, vol. 40, No. 4, Dec. 1970, pp. 1153-1157. |
Pittman, “Microporosity in carbonate rocks” AAPG Bulletin, vol. 55, No. 10, Oct. 1971, pp. 1873-1881. |
Pittman, “Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone” AAPG Bulletin, vol. 76, No. 2, Feb. 1992, pp. 191-198. |
Liu et al., “Multiple-Point simulation integrating wells, three-dimensional seismic data, and geology,” AAPG Bulletin, Jul. 2004, vol. 88(7): pp. 905-921. |
Strebelle, “Sequential Simulation Drawing Structures from Training Images,” Stanford University, Thesis for Doctorate of Philosophy, Nov. 2001: pp. 1-200. |
International Search Report of PCT Application No. PCT/US2009/040198 dated Nov. 19, 2009: pp. 1-3. |
International Search Report of PCT Application No. PCT/US2009/040210 dated Dec. 18, 2009: pp. 1-3. |
International Search Report of PCT Application No. PCT/US2010/040363 dated Apr. 5, 2011: pp. 1-3. |
International Search Report of PCT Application No. PCT/US2010/040378 dated Apr. 5, 2011: pp. 1-3. |
International Preliminary Report on Patentability of PCT Application No. PCT/US2010/040378 dated Jan. 4, 2012: pp. 1-5. |
Akbar et al., “A Snapshot of Carbonate Reservoir Evaluation,” Oilfield Review, Winter 2000/2001: pp. 20-41. |
Caers et al., “SPE 49026: Stochastic Reservoir Simulation Using Neural Networks Trained on Outcrop Data,” SPE International, 1998: pp. 321-336. |
Cha et al., “Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning,” Applied Optics, Jun. 2000, vol. 39(16): pp. 2605-2613. |
Coates et al., “NMR Logging Principles & Applications,” Haliburton Energy Services, 1999: pp. 1-253. |
Creath, “Surface Profilometry: State of the Art,” 1992: pp. 2.1-2.20, <http://www.tesisenred.net/bitstream/handle/10803/6745/03CHAPTER2.pdf?sequence=3>. |
Eaton, “On the importance of geological heterogeneity for flow simulation,” Sedimentary Geology, 2006, vol. 184: pp. 187-201. |
Geocosm, accessed Oct. 2010: pp. 1-5, <http://www.geocosm.net/>. |
“Summary of FY 2008 Geosciences Research,” U.S. Department of Energy, Nov. 2008: pp. 1-260. |
Gonzalez et al., “SPE 111453: Development and Application of an Integrated Clustering/Geostatistical Approach for 3D Reservoir Characterization, SACROC Unit, Permian Basin,” SPE International, 2007: pp. 1-41. |
Gunter et al., “SPE 38679: Early Determination of Reservoir Flow Units Using an Integrated Petrophysical Method,” SPE International, 1997: pp. 1-8. |
Harris, “Delineating and quantifying depositional facies patterns in carbonate reservoirs: Insight from modern analogs,” AAPG Bulletin, Jan. 2010, vol. 94(1): pp. 61-86. |
Hornby et al., “Imaging of Near-Borehole Structure with the Array Sonic Tool,” SEG Annual Meeting, Oct.-Nov. 1988: pp. 124-128. |
Hurley et al., “Flow Unit Determination in a Vuggy Dolomite Reservoir, Dagger Draw Field, New Mexico,” SPWLA 40th Annual Logging Symposium, May-Jun. 1999: pp. 1-14. |
Inoue, “Chapter 1: Foundations of Confocal Scanned Imaging in Light Microscopy,” Handbook of Biological Confocal Microscopy, Third Edition, SpringerScience+Business Media: New York, 2006: pp. 1-19. |
Kim et al., “Three-Dimensional Tissue Cytometer Based on High-Speed Multiphoton Microscopy,” Cytometry Part A, 2007, vol. 71A: pp. 991-1002. |
Knackstedt et al., “SCA2006-23: 3D Imaging and Flow Characterization of the Pore Space of Carbonate Core Samples,” International Symposium of the Society of Core Analysts, Sep. 2006: pp. 1-13. |
Landa et al., “SPE 77430: Sensitivity Analysis of Petrophysical Properties Spatial Distributions, and Flow Performance Forecasts to Geostatistical Parameters Using Derivative Coefficients,” SPE International, 2002: pp. 1-14. |
Liu et al., “SPE 90643: Merging Outcrop Data and Geomechanical Information in Stochastic Models of Fractured Reservoirs,” SPE International, 2004: pp. 1-10. |
Montaron et al., “SPE 105041: A Quantitative Model for the Effect of Wettability on the Conductivity of Porous Rocks,” SPE International, 2007: pp. 1-14. |
Parra et al., “Wave attenuation attributes as flow unit indicators,” The Leading Edge, Jun. 2002: pp. 564-572. |
Phillips et al., “Measuring physical density with X-ray computed tomography,” NDT & E International, 1997, vol. 36 (6): pp. 339-350. |
Royo Royo, “Chapter 2: Surface profilometry: state of the art,” Topographic measurements of non-rotationally symmetrical concave surfaces using Ronchi deflectometry, Universitat Politecnica de Catalunya d'Optica I Optometria, 1999: pp. 2.1-2.20, <http://hdl.handle.net/10803/6745>. |
Wei et al., “Confocal white light profilometry as a tool for surface studies of paintings,” Retrieved Jun. 12, 2009: pp. 1-2. |
Wu et al., “SCA2007-16: Reconstruction of Multi-Scale Heterogeneous Porous Media and Their Flow Prediction,” International Symposium of the Society of Core Analysts, Sep. 2007: pp. 1-12. |
Zeiss, “LSM 700,” Carl Zeiss MicroImaging GmbH, Dec. 2008: pp. 1-34. |
Zhang, “Porous media reconstruction using a cross-section image and multiple-point geostatistics”, ICACC International Conference pp. 24-29, 2009, Article No. 4777303. |
Patent Cooperation Treaty, International Preliminary Report of Patentability for International Application No. PCT/US2010/040378, dated Apr. 5, 2012, 5 pages. |
Inque, “Foundations of Confocal Scanned Imaging in Light Microscopy”, Handbook of Biological Confocal Microscopy, Third Edition, SpringerScience + Business Media: New York, 2006, pp. 1-19. |
Schindler, et al., “Quantification of vuggy porosity, Indian Basin field, New Mexico”, Unpublished M.S. thesis, Colorado School of Mines, Golden, CO, 2005. |
Tanprasat, “Petrophysical analysis of vuggy porosity in the Shu'aiba Formation of the United Arab Emirates”, Unpublished M.S. thesis, Colorado School of Mines, Golden, CO, 2005. |
Warlaw, “The Effects of Pore Structure of Displacement Efficiency in Reservoir Rocks and in Glass Micromodels”, SPE 8843—SPE/DOE Symposium on Enhanced Oil Recovery, Apr. 1980, pp. 345-352. |
Office Action issued in CN200980000258.9 on Apr. 18, 2013, 4 pages. |
Office Action issued in CN200980000258.9 on Jul. 24, 2013, 4 pages. |
Office Action issued in CN200980000258.9 on Jul. 31, 2012, 15 pages. |
Gitman, I.M. et al., “Representative volume: existence and size determination”, Engineering Fracture Mechanics, vol. 74, 2007, 2518-2545. |
CN 2009800000258.9, Notification for the Grant of Invention Patent Right with Associate's Email, dated Jan. 28, 2014, 8 pages. |
CN200980000184.9, Notice of Allowance dated Nov. 6, 2012, 4 pages. |
CN200980000184.9, Office Action dated Feb. 21, 2012, 6 pages. |
GC 2010-16232, Examination Report, dated Dec. 31, 2014, 4 pages. |
PCT/US2009/040198, Written Opinion dated Nov. 19, 2009, 4 pages. |
PCT/US2010/040378, International Search Report & Written Opinion, dated Apr. 5, 2011. |
PCT/US2012/027037, International Search Report and Written Opinion, dated Sep. 28, 2012, 8 pages. |
RU2013143803, Decision on Grant (English translation), 8 pages. |
RU2009135608, Decision on Grant, dated Aug. 29, 2011, 19 pages. |
RU2013143803, Final Office Action, dated Dec. 19, 2014, 6 pgs. |
Levy, et al., “Understanding Flow Behavior in Carbonate Reservoirs from Facies-Based Earth Models”, AAPG and AAPG European Region Energy Conference and Exhibition, Athens, Greece, Nov. 18-21, 2007. |
Min, Ki-Bok et al., “Determining the equivalent permeability tensor for a fractured rock masses using a stocastic REV approach: Method and application to the field data from Selafield, UK”, Hydrogeology Journal, vol. 12, 2004, pp. 497-510. |
Niemi, et al., “Hydraulic characterization and upscaling of fracture networks based on multiple-scale well test data”, 2000, 18 pages. |
Numerical Rocks, “http://www.numericalrocks.com”. |
Pranter, M. et al., “Scales of lateral petrophysical heterogeneity in dolomite lithofacies as determined from outcrop analogs: Implications for 3-D reservoir modeling”, AAPG Bulletin, vol. 89, No. 5, 2005, pp. 645-662. |
Rathod, A., “Petrophysical analysis of the Thamama Group, Abu Dhabi, U.A.E.”, Unpublished M.Sc thesis, Colorado School of Mines, Golden, CO., 2003. |
Serra, “Formation MicroScanner Image Interpretation”, Schlumberger Educational Services, 1989, 117 pgs. |
Strebelle, et al., “Modeling of a Deepwater Turbidite Reservoir Conditional to Seismic Data Using Multiple-Point Geostatistics”, SPE 77425—SPE Annual Technical Conference and Exhibition, 2002. |
Tweheyo, et al., “SCA2005-72: Pore Characterization, Relating Mining Permeability and CT-Scan Porosity of Carbonate Cores”, International Symposium of the Society of Core Analysis, 2005, pp 1-7. |
Zhang, et al., “An improved reconstruction method for porous media based on multiple-point geostatistics”, International Forum on Porous Flow and Applications, Apr. 2009, pp. 653-659. |
Zhang, “Multiple-point simulation of multiple reservoir facies”, Unpublished M.S. thesis, Stanford University, California, 2002, 163 p. |
Zhang, Ting et al., “ICACC International Conference”, 2009, pp. 24-29. |
Guerillot, “From Geological modeling to flow simulation to forecast oil and gas reservoir production”, New links between basic research and applied energy R&D, Berlin, No. 8-9, Nov. 2004, pp. 1-37. |
Caers, “History Matching Under Training-Image Based Geological Model Constraints”, Society of Petroleum Engineers Journal, Dallas, TX, SPE 74716, Sep. 1, 2003, pgs. 218-226. |
EP Application No. 09730748.2, European Extended Search Report, dated Nov. 25, 2016, 8 pgs. |
Number | Date | Country | |
---|---|---|---|
20090262603 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
61044018 | Apr 2008 | US |