The present invention relates to a method for checking the functionality of an antenna coil for a portable data carrier, to a corresponding checking apparatus and to an apparatus for manufacturing an antenna coil.
Portable data carriers, such as for example national identity cards, passports, credit cards, labels for authenticating goods or the like, can be assembled with an antenna coil for contactless data communication with a reading device. The antenna coil is for this purpose normally connected to an integrated circuit of the data carrier, in particular a chip, and applied, for example imprinted, on a carrier layer or inlay layer, for example made of a plastic material such as PC or PVC, of a data-carrier body of the data carrier.
To check the functionality of an antenna coil during or after the manufacture of the corresponding data carrier, various methods are known. Such a check is substantially aimed at checking whether the antenna coil has a break and/or whether two or more coil turns of the antenna are inadvertently short-circuited. Defects of this nature considerably impair the functionality of the antenna coil, or destroy it completely.
An in-process check of the antenna coil is usually effected in the form of a direct-current resistance measurement. To carry out such an ohmic measurement correctly and with the required accuracy, a four-point measurement is normally required. If the measured values are outside a stipulated interval, this can indicate a conducting path break or a short circuit. However, such a method can only be used to determine the ohmic portion of the antenna coil. In this way it is not possible to determine a frequency-dependent impedance of the coil, consisting of the inductance of the coil, the ohmic portion and a capacitive portion which can also come from a carrier material. Further, this checking method is elaborate, because a contacting of the antenna coil is required. When the antenna coil is manufactured by means of a printing process, for example imprinted by means of silver conductive paste, it can moreover happen that the paste is not yet completely cured upon the resistance measurement, and corresponding contact pins which are employed for contacting are contaminated and subsequently have to be cleaned or replaced.
Alternatively, the resonance frequency of the antenna coil and its quality factor can be determined contactlessly. For this purpose, a phase and impedance analyzer is normally employed. Such a, very elaborate, method is described in detail for example in “RFID-Handbuch” by Klaus Finkenzeller, 5th edition, Carl Hanser Verlag, Munich, 2008, in chapter 4.1.11.2. If the measured resonance frequency is within a stipulated range, the antenna coil is functional. This kind of check is more informative than a strictly ohmic measurement, but is far more elaborate and best carried out manually. The time duration of such a check is in the range of several seconds. Hence, this check is normally not carried out in-process, but only on some random samples and for production release.
Finally, when an antenna coil of a transponder is checked, the antenna thus already being connected to the corresponding integrated circuit, the responsiveness of the transponder can be tested. Such a check is not always informative, even when it turns out positive, because slight defects of the antenna coil, such as for example hair cracks in a conducting path, result only in a damping and thus only a lower read range. This usually does not impair the general responsiveness of the transponder in the test. However, such defects are often a reason for early failures of the data carrier after it is issued to a user and should hence already be recognized upon the check.
The object of the present invention is therefore to propose a method and an apparatus for checking an antenna coil with regard to its functionality in a manner that is fast, easily carried out and cost-efficient. It is desirable for a result of the check to be profitably employable upon the further manufacture of the antenna coil.
This object is achieved by a method and a checking apparatus as well as an apparatus for manufacturing an antenna coil having the features of the independent claims. Advantageous embodiments and developments of the invention are stated in the dependent claims.
The basic idea of the present invention consists in exciting the antenna coil to be checked to oscillate, and detecting and evaluating the free, damped oscillation of the antenna coil generated by the excitation, in order to recognize any defects of the antenna coil.
Therefore, a method according to the invention for checking the functionality of an antenna coil for a contactlessly communicating portable data carrier comprises the following steps:
In a first step, the antenna coil is excited to oscillate. This is preferably done inductively through a pulsed magnetic field, which can be generated for example in simple manner by a single direct-current pulse. Preferably, the excitation consists of a single magnetic-field pulse. The direct-current pulse can be generated advantageously as a Dirac impulse function. It is also possible that the magnetic field is generated by a (direct-)current pulse which, unlike a Dirac impulse function, only has one steep edge. Preferably, the exciting of the antenna coil is effected contactlessly via an exciting coil which for this purpose is coupled to a corresponding pulse generator.
In a second step of the method according to the invention, the free, damped oscillation of the antenna coil which is generated in response to the excitation is detected. This is preferably likewise done contactlessly by means of a measuring antenna. Exciting coil and measuring antenna are for this purpose advantageously disposed in direct proximity of the antenna coil to be checked.
In a third step, the detected free, damped oscillation of the antenna coil is evaluated. This can be done by means of a suitable evaluation device which is connected to the measuring antenna.
A checking apparatus, according to the invention, for checking the functionality of the antenna coil for a contactlessly communicating portable data carrier thus comprises a pulse generator. The latter is arranged to excite the antenna coil to oscillate contactlessly via an exciting coil attached to the pulse generator. Further, the checking apparatus comprises a measuring antenna which is arranged to contactlessly detect a free, damped oscillation of the antenna coil. Finally, an evaluation device of the checking apparatus, which is connected to the measuring antenna, is arranged to evaluate the free, damped oscillation detected by the measuring antenna.
The evaluation device can, in so doing, in particular draw on a comparison with reference values of an intact antenna coil. For analyzing the signals detected by the measuring antenna upon detection of the free, damped oscillation there can be used in the known way for example a digital signal processor (DSP) or an oscilloscope.
The antenna coil excited in the described manner dies out after excitation immediately with a free, damped oscillation A(t) which can be described by the following formula:
A(t)=A0(t)e(−δt)cos ωt
A(t) can correspond to the current I or the voltage U of an electrical oscillating circuit formed by the antenna coil. Therefore, the voltage pattern of the antenna coil immediately after excitation can be described by the following formula:
U(t)=U0(t)e(−δt)cos ωt
The circular frequency ω corresponds here to the self-resonant frequency of the antenna coil. From the decay coefficient δ the quality factor of the antenna coil can be established. The longer the decay phase lasts, the higher the quality factor of the corresponding oscillating circuit is. That is to say, an evaluation of the free damped oscillation of the antenna coil, i.e. its dying out immediately after excitation, allows both the self-resonant frequency and the quality factor of the antenna coil to be determined.
The invention is now based on the fact that a defect of the antenna coil to be checked, such as for example an interruption of a conducting path or a short circuit between individual coil turns of the antenna coil, has the result that a dying-out signal pattern recognizable upon a described check differs significantly from a corresponding dying-out signal pattern of an intact antenna coil. Parameters of a faulty coil that are ascertained on the basis of the evaluated free, damped oscillation, in particular the antenna's self-resonant frequency and its quality factor, differ clearly from the corresponding parameters of an intact antenna coil.
A conducting path break, for example, becomes apparent in a clearly recognizable change in dying-out behavior, in particular a changed, normally elevated, self-resonant frequency. In the case of a short circuit of two or more coil turns, there is hardly any more dying out to be observed.
In this way, upon evaluation of the free, damped oscillation by the checking apparatus, it can not only be recognized whether or not the antenna coil is faulty but, in the case of a fault or defect, it also possible to ascertain the type of fault or the nature of the defect.
The advantages of the method according to the invention are evident and numerous. The check of the antenna coil can be carried out contactlessly, with very little time expenditure and thus in particular during an ongoing production process. In particular, a printed antenna coil that is not yet completely cured can already be checked with the method according to the invention. The required checking apparatus can be provided relatively simply and cost-efficiently. Moreover, the method allows not only faults or defects of a defective antenna coil to be recognized, but also different types of faults to be distinguished. The method furthermore allows, without changing the setup, a check of both unassembled antenna coils, i.e. those not yet connected to an integrated circuit, and antenna coils with a circuit attached, such as for example already finished transponders or contactlessly communicating chip cards. Finally, the method can be carried out in parallel for a plurality of antennas that are disposed for example side by side on a production sheet, without any shielding of individual antennas being necessary. Altogether, antenna coils can thus be checked with regard to their functionality fast, in a simple manner and cost-efficiently.
Preferably, the exciting coil and the measuring antenna are disposed “orthogonally” to each other for checking the antenna coil or in the checking apparatus. In the case that the exciting coil and the measuring antenna are not disposed orthogonally to each other, but for example side by side, the exciting pulse of the exciting coil is also detected by the measuring antenna. Moreover, the exciting coil's decay behavior is then superimposed on the antenna coil's decay behavior to be measured.
Upon an “orthogonal” arrangement of the exciting coil relative to the measuring antenna, the two lie relative to each other such that the signal of the exciting coil is not perceived by the measuring antenna. The exciting coil is so disposed spatially vis-à-vis the measuring antenna that substantially no signal is coupled into the measuring antenna. A signal is always coupled into a coil when the contour integral over the magnetic flux Φ through this coil is greater than zero (cf. above-cited “RFID-Handbuch”, chapters 4.1.6 and 4.1.9.2). The integral over the magnetic flux Φ is zero exactly when magnetic field lines of different direction and field strength in the measuring antenna cancel each other out across the total area, or when the angle of the field lines to the coil axis amounts to exactly 90°—hence the term “orthogonal” arrangement. A suitable so-called coplanar orthogonal arrangement of the exciting coil relative to the measuring antenna, as will be described more precisely hereinafter, can be effected for example such that the two antennas lie partly one over the other suitably in a plane.
The measuring antenna is preferably so designed that the quality factor of the measuring antenna is as small as possible and the input capacitance of a possibly attached amplifier cannot take effect if possible, because the measuring antenna itself can otherwise bring a strong self-oscillation into the measurement. Such an unwanted self-resonance of the measuring antenna can be suppressed for example by means of a compensation circuit described more precisely hereinafter.
Depending on the nature of a defect ascertained by the checking apparatus when checking the antenna coil, it can be provided that at least one production parameter for manufacturing the antenna coil is newly determined. When the antenna coil is for example printed upon manufacture, such a parameter can relate for example to the metering of the conductive paste to be printed, the width of a conducting path to be printed, the number of coil turns, or the like. A newly determined production parameter can help as feedback in the ongoing production to optimize the same and to prevent the manufacture of a great number of defective antenna coils.
Alternatively or additionally, an antenna coil recognized as defective can be “repaired” or optimized in a further step. This can be done by subsequently disposing, in particular printing, missing conducting path portions, by overprinting existing conducting path portions, or by removing unneeded portions of existing conducting path structures, in order to correct or adjust the antenna coil with regard to stipulated physical parameters, such as for example its ohmic resistance, in the post-processing step.
Accordingly, an apparatus according to the invention for manufacturing an antenna coil on a carrier material for a contactlessly communicating portable data carrier comprises a device for manufacturing an antenna coil on the carrier material, for example a printing apparatus. Further, the production apparatus comprises a checking apparatus according to the invention for checking the antenna coil in the way described in detail hereinabove.
As mentioned, the evaluation device of the checking device is preferably arranged to newly determine, in dependence on the nature of an ascertained defect of the antenna coil, at least one production parameter for manufacturing further antenna coils.
Further, the production apparatus is preferably arranged to post-process in a further step, as described hereinabove, an antenna coil ascertained as defective after the check of the antenna coil by the checking apparatus.
The method according to the invention can be used to check an unassembled antenna coil, i.e. an open or closed antenna coil without an integrated circuit attached, or a transponder in the form of the antenna coil with an integrated circuit attached.
According to a preferred embodiment of the checking method, the functionality is checked on a closed antenna coil which is not yet connected to an integrated circuit. The antenna coil can have already been manufactured as a closed antenna coil from the outset, or first be present as an open antenna coil which is made into a closed antenna coil by bridging the ends of the open antenna coil before checking Subsequently, i.e. after checking, a conducting path of the antenna coil is interrupted for manufacturing an open antenna coil according to this preferred embodiment, so that the open ends of the antenna coil can be connected to components of an integrated circuit, in particular a chip.
This preferred embodiment makes it possible in a simple manner to recognize faults, in particular line breaks, in an antenna coil that occur very close to the contacting ends of the coil. Conventional contactless checking methods which are not carried out on closed, but on open, antenna coils do not, or hardly, recognize such faults due to their inherent principle, since the physical properties of a part of such a faulty antenna coil, if the part is only large enough, are hardly distinguishable from the physical properties of an intact coil, since the corresponding line lengths are not sufficiently different from each other.
If a conducting path break was present in the original antenna coil without a chip, no matter at what point, i.e. also close to one of the contacting ends of the antenna coil, the coil that is now changed, i.e. short-circuited by bridging of the contacting ends, is still open and hence clearly distinguishable from an intact coil, which should now be closed due to the bridging. The dying-out behavior of a coil closed as described is unmistakable in comparison to an open coil.
According to a development of this preferred embodiment, the step of checking the antenna coil is repeated after the interrupting of the coil and before the attaching of the chip. In this way it is then also possible to reliably recognize other defects of the antenna coil, in particular a short circuit between individual coil turns.
The invention will described by way of example hereinafter with reference to the attached drawings. Therein are shown:
Here and in the following, only the term “coil” or “antenna coil” will always be employed for reasons of simplicity both for designating an unassembled antenna coil, i.e. an antenna coil without a circuit connected thereto, and for designating a transponder, i.e. an antenna coil with a circuit already connected, unless otherwise indicated by the context.
Within the framework of this invention, the term “orthogonal” arrangement of two coils to each other, here the exciting coil 130 and the measuring antenna 140, is so employed that the arrangement of the exciting coil 130 relative to the measuring antenna 140 is effected spatially such that no signal of the exciting coil 130 is coupled into the measuring antenna 140 if possible. As mentioned hereinabove, this is the case exactly when the contour integral over the magnetic flux Φ through this coil is greater than zero. The integral over the magnetic flux Φ is zero exactly when magnetic field lines of different direction and field strength in the measuring antenna 140 cancel each other out over the total area, or when the angle of the field lines to the coil axis amounts to exactly 90°. In the shown example, the exciting coil 130 and the measuring antenna 140 are disposed “orthogonally” to each other coplanarly, by the two coils being disposed partly one over the other, as represented. This arrangement can be further coordinated such that the integral over the magnetic flux yields zero, as desired. This follows from the magnetic field lines generated by the exciting coil 130 extending in respectively different directions inside and outside the exciting coil 130. The degree of overlap of the exciting coil 130 and the measuring antenna 140 is now so chosen that these field lines exactly cancel each other out in the inner surface of the measuring antenna 140. As described hereinafter with reference to
A first transmission channel extends from a power pack 200 via a low-pass filter 210, the coaxial cable 220, and a further low-pass filter 210 to the voltage supply of the measuring card 105.
A second transmission channel starts at a signal generator 230 for a signal tone for triggering a pulse, in the shown example a Dirac pulse, extends via a trigger 240 in the form of a switch, optionally via a band-pass filter (not shown), the coaxial cable 220, a further band-pass filter 250, and an evaluation circuit 260 of the measuring card 105 to the pulse generator 110.
Finally, a third transmission channel extends from the measuring antenna 140 via the measurement amplifier 150 on the measuring card 105, a high-pass filter 270, the coaxial cable 220 and a further high-pass filter 270 to the oscilloscope 280.
According to a first embodiment of the checking method, the antenna coil is excited by a Dirac pulse. For this purpose, the pulse generator 110 is adjusted so as to reach a maximum amplitude in the shortest possible time. For example, an amplitude of 12 V with a width of only 29 ns can be reached.
When the pulse generator 110 is now attached to the exciting coil 130, there results—without arrangement of the antenna coil 20—through the energy arising in the thereby arising magnetic field a signal pattern with a subsequent dying-out time which is detected by the measuring antenna 140, as is illustrated in
When an antenna coil 20 to be checked is now disposed directly under the exciting coil 130, the antenna coil is excited by the positive Dirac pulse of the pulse generator 110 to a free, damped oscillation. From the resulting typical dying out of the antenna coil 20 the self-resonant frequency of the antenna coil 20 as well as its quality factor can be established. If the antenna coil 20 has a fabrication defect, for example a conducting path break or a short circuit between individual coil turns, this leads to a significantly deviating signal pattern of “post-oscillation”, i.e. of the corresponding free, damped oscillation of the damaged antenna coil, as illustrated hereinafter. In particular, self-resonant frequency and/or quality factor of such a coil differ from the corresponding values of an intact antenna coil in a clearly recognizable way.
A transponder, i.e. an antenna coil with an integrated circuit attached, normally possesses a self-resonant frequency in the order of magnitude of the transmitting frequency of an appurtenant reading device. Contactless chip cards according to ISO/IEC 14443 are usually tuned in the range of 15 to 17 MHz at a stipulated read frequency of 13.56 MHz.
An antenna coil, without an integrated circuit attached, on a corresponding carrier material likewise forms, together with the parasitic capacitances occurring between the turns, an oscillating circuit, usually with a self-resonant frequency in the range of 30 to 50 MHz, depending on the dielectric constant of the carrier material and the turns count.
The signal patterns that will be described hereinafter with reference to
As to be seen with reference to
That is to say, the two primarily occurring faults of an antenna coil 20 to be checked, a conducting path break or a short circuit between coil turns, can be reliably recognized by detecting and evaluating a free, damped oscillation of the antenna coil occurring as a result of the excitation of the coil 20 by a pulse.
As mentioned above and illustrated again in
When the exciting coil 130 and the measuring antenna 140 are disposed orthogonally to each other in the manner described hereinabove with reference to
With such a measurement setup, the detection of a free damped oscillation of an antenna coil 20 with a conducting path break delivers a signal pattern as to be seen in
As to be seen with reference to
The evaluation of the signals detected by means of the measuring antenna 140 can be carried out in different ways. According to a first embodiment, a digital signal processor (DSP) can be used for evaluation. In so doing, data sets of intact antenna coils are employed for verifying detected data. The DSP converts the measured signal by means of an A/D converter and tests the converted signal on the basis of stored reference values. Alternatively or additionally, the DSP can also establish the self-resonance of the antenna coil and test the dying-out voltage level.
According to a second embodiment on the basis of a reference coil, a parallel reference measurement is carried out with an antenna coil known to be intact. In this evaluation method it thus only necessary to determine the distance, the delta, between the signal detected for the antenna coil to be checked and the signal of the reference coil, as illustrated in
According to a third embodiment, an oscilloscope can evaluate the currently detected data on the basis of stored limiting values. With the mathematical functions normally provided by the oscilloscope, the self-resonance and the quality factor of the checked antenna coil can be determined automatically in a simple manner.
As represented in
Due to the fact that the checking method according to the invention, as previously explained with reference to
Firstly, antenna coils recognized as defective can be sorted out. Secondly, it is also possible to use the results of the checking method both by way of feedback to adjust production parameters of the preceding antenna manufacture, and to carry out a differentiated post-processing of individual antenna coils, as will be described by way of example hereinafter with reference to
It was hitherto customary, for example, to print the conducting paths of the coils twice in order to avoid interruptions of printed antenna coils. In this way it is possible to exclude with high probability the case of an unwanted interruption remaining at the same place on the antenna coil upon each of the two printing operations—which would interrupt the conducting path as a whole. The general procedure is illustrated schematically in
This procedure is very time-consuming as well as involving high material consumption.
The checking method according to the invention now delivers results that allow the described production process to be optimized. The number of antenna coils recognized as defective can be evaluated to the effect that the number of ascertained conducting path breaks and the number of recognized turn-to-turn short circuits are compared. A high number of conducting path breaks can indicate that for example the quantity of conductive paste employed for printing the conducting path should be increased. A great number of short circuits could suggest the opposite conclusion. On the basis of such an evaluation the corresponding production parameter is now adjusted until the corresponding fault count of the fault type decreases. The remaining faulty antenna coils can then still be post-processed, for example as described with reference to
According to a further variant, it may be provided that upon a first printing of an antenna coil 20 additional antenna coil loops or bends 21, 22, 23 are printed, as represented in
In a further production step, depending on the value determined within the framework of the checking method, the resistance of the antenna coil can now be adjusted, if necessary, by “opening” one or more than one of the bends 21, 22, 23. This can be done for example by punching out, lasering out or removing in another suitable manner a part of a conducting path portion short-circuiting the bend, as indicated in
The shown bends 21, 22, 23 can also be present in a different form, for example a meandering form. This has the further advantage that they remain without effect in the alternating current circuit after the short circuit of the respective bend is disconnected.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 112 873 | Sep 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/003728 | 9/5/2012 | WO | 00 | 3/5/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/034293 | 3/14/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2887650 | Ruddock et al. | May 1959 | A |
3659197 | Alley et al. | Apr 1972 | A |
6236220 | Enguent | May 2001 | B1 |
Number | Date | Country |
---|---|---|
10117249 | Nov 2002 | DE |
102008004772 | Jul 2009 | DE |
102008004772 | Jul 2009 | DE |
Entry |
---|
Finkenzeller, “RFID Handbuch Grudlagen und Praktische Anwendungen von Transpondern, Kontaktlosen Chipkarten und NFC,” 5th edition, Chapter 4.1.6, pp. 80-82, 2008, Carl Hanser Verlag, Munich. Published in English under Finkenzeller, “RFID Handbook Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication,” 3rd Edition, Chapter 4.1.6, pp. 70-72, 2010, John Wiley & Sons Ltd., Chichester, GB. |
Finkenzeller, “RFID Handbuch Grudlagen und Praktische Anwendungen von Transpondern, Kontaktlosen Chipkarten und NFC,” 5th edition, Chapter 4.1.9.2, pp. 94-95, 2008, Carl Hanser Verlag, Munich. Published in English under Finkenzeller, “RFID Handbook Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication,” 3rd Edition, Chapter 4.1.9.2, pp. 82-83, 2010, John Wiley & Sons Ltd., Chichester, GB. |
Finkenzeller, “RFID Handbuch Grudlagen und Praktische Anwendungen von Transpondern, Kontaktlosen Chipkarten und NFC,” 5th edition, Chapter 4.1.11.2, pp. 115-119, 2008, Carl Hanser Verlag, Munich. Published in English under Finkenzeller, “RFID Handbook Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication,” 3rd Edition, Chapter 4.1.11.2, pp. 102-106, 2010, John Wiley & Sons Ltd., Chichester, GB. |
German Search Report for corresponding German Application No. 102011112873.9, created on Jun. 28, 2012. |
International Search Report for corresponding International PCT Application No. PCT/EP2012/003728, mailed Dec. 13, 2012. |
Number | Date | Country | |
---|---|---|---|
20140225791 A1 | Aug 2014 | US |