This application is the national phase under 35 U.S.C. §371 of PCT International Application No. PCT/EP2013/067437 which has an International filing date of Aug. 22, 2013, which designated the United States of America, and which claims priority to German patent application no. 102012215479.5 filed Aug. 31, 2012, the entire contents of each of which are hereby incorporated herein by reference.
At least one embodiment of the invention generally relates to a method for closing a switch and/or to a switch for performing the method.
Switches in the form of load disconnectors for low voltages are known and serve to connect and interrupt an electric current. A pole housing is provided for each current phase, the side walls of the pole housing bearing against one another. Each pole housing contains moving and fixed switching contacts, wherein the moving switching contacts are each located at the free end of a pivotable lever.
In order to open the switch, the contact areas of the switching contacts, which contact areas rest against one another, are separated from one another by a switching shaft, wherein the contact areas each run parallel to one another. The switching shaft runs transverse to the lever and to the side walls. Connection lugs to which connection cables can be connected are located at both ends of the switching shaft. Quenching plates which are arranged in the region of the switching contacts ensure that an arc which is produced when the switching contacts are separated is quenched.
The switching contacts are often in the form of blade contacts, one of which is stationary and the other of which moves.
In this case, upstream elements which are composed of a non-conductive material are provided, the elements causing spreading, so that the stationary or moving switching blade can enter during the connection process without a great deal of resistance. During connection, spreading initially takes place due to the application of force, and the moving or stationary contact blade is then inserted.
One disadvantage is that the connection speed is reduced by the spreading process.
At least one embodiment of the invention is directed to a switch which ensures low-wear closing, in particular when closing in response to a short circuit.
A method and a switch are disclosed. Dependent claims are advantageous refinements.
An embodiment of the method makes provision for a moving counter-pressure element to press the moving contact area in the direction of the common contact plane in the open position, as a result of which the transverse offset is at least reduced, for the counter-pressure element to be moved in the direction of the closed position together with the moving switching contact when the switch is closed, and for the counter-pressure element to be stopped during the course of the closing movement, while the moving contact area continues to be moved until it is in the closed position.
An embodiment is directed to the switch. The switch makes provision for a moving counter-pressure element to be provided, the moving counter-pressure element pressing against the moving contact area in the open position and at least reducing the transverse offset, for the counter-pressure element to be moved in the direction of the closed position together with the moving switching contact when the switch is closed, and for the counter-pressure element to stay still during the course of the closing movement, while the moving contact area continues to move into the closed position.
The invention is described in greater detail below with reference to an example embodiment. In the drawings:
An embodiment of the method makes provision for a moving counter-pressure element to press the moving contact area in the direction of the common contact plane in the open position, as a result of which the transverse offset is at least reduced, for the counter-pressure element to be moved in the direction of the closed position together with the moving switching contact when the switch is closed, and for the counter-pressure element to be stopped during the course of the closing movement, while the moving contact area continues to be moved until it is in the closed position.
It is especially advantageous when the moving contact area is moved in each case in the contact plane or in a plane which is parallel to the contact plane before and after stopping, and that the moving contact area, after stopping, slides into the closed position in a manner bearing against the counter-pressure element and/or against the stationary contact area. The energy which is present during opening can best be utilized when the moving contact area is pressed in the direction of the common contact plane during the course of the opening movement.
An embodiment is directed to the switch. The switch makes provision for a moving counter-pressure element to be provided, the moving counter-pressure element pressing against the moving contact area in the open position and at least reducing the transverse offset, for the counter-pressure element to be moved in the direction of the closed position together with the moving switching contact when the switch is closed, and for the counter-pressure element to stay still during the course of the closing movement, while the moving contact area continues to move into the closed position.
It is especially advantageous when the moving contact area is in each case moved in the contact plane or in a plane which is parallel to the contact plane before and after stopping, and that the moving contact area, after stopping, slides into the closed position in a manner bearing against the counter-pressure element and/or against the stationary contact area, the moving contact area only bearing against the stationary contact area in the closed position.
In order to stop the counter-pressure element during the course of the closing movement, it is proposed that the counter-pressure element butts against a stationary stop during the course of the closing movement.
A technically simple solution of an embodiment makes provision for the stop to be formed by the stationary switching contact. Reliable closing is achieved when the moving contact area slides on the stationary contact area into the closed position.
A particularly reliable design is obtained when the moving switching contact is in the form of spring-action contact elements which face one another, and the stationary switching contact is in the form of a contact blade (contact plate), the contact blade sliding between the spring-action contact elements during the course of the closing movement.
A simple elastic design makes provision for the contact elements to be in the form of contact springs.
It is particularly expedient from an energetic point of view when the counter-pressure element presses the moving contact area in the direction of the common contact plane during the course of the opening movement.
The schematic illustration in
Current is connected via connection lugs 2, 3 to which appropriate current cables are connected from the outside (not shown). The connection lug 3 is connected to a stationary switching contact 4 which is in the form of a contact blade 4a. A moving switching contact 5 is in the form of a lever 8 and can be pivoted about a rotation shaft 6. The lever 8 has spring-action contact elements 5a at its free end, the contact elements having two contact areas 5b which face one another. The lever end which is rotatably mounted on the rotation shaft 6 is connected to the connection lug 2 by way of a conductive connecting piece 7. Quenching plates 7a for quenching an arc which is produced between the switching contacts 4, 5 when the switch 1 is opened are provided opposite the connecting piece 7.
A rod 9 connects the lever 8 to a switching shaft 10 in an articulated manner.
In order to open and close the switch 1, the lever 8 is appropriately pivoted by way of rotation of the switching shaft 10.
A plate-like pressure element 11 which is composed of electrically nonconductive material bears against the contact areas 5b of the spring-action contact elements 5a, the pressure element pressing the contact elements 5a and therefore the contact areas 5b apart. In this case, the pressure element acts as a spreading element 11a which elastically spreads the contact elements 5a. The distance between the contact areas 5b, on account of the spreading element 11a, amounts to the width of the contact blade 4a in this case (it goes without saying that the distance can also be greater than here in this embodiment).
The spreading element 11a can be freely pivoted about a rotation shaft 6a independently of the moving contact elements 5a and connected in a force-fitting manner to the contact elements 5a by way of the contact faces 5b.
The moving switching contact 5 is in its closed position in
Without the spreading element 11a, the moving contact areas 5b would have a transverse offset in relation to the contact planes during the closing process in the intermediate position, the transverse offset being almost compensated for by the spreading element 11a owing to the spreading (it goes without saying that it may also be overcompensated in comparison to here in this embodiment).
In this case, the moving contact areas 5b in each case move in the contact plane or in a plane which is parallel to the contact plane in front of and behind the stop 12, and slide into the closed position behind the stop 12 in a manner bearing against the stationary contact area 4b (and under certain circumstances also further against the counter-pressure element 11).
Owing to the spreading element 11a, the moving switching contacts 5 move into their closed position, in which the contact areas 4b, 5b bear against one another with pressure being applied, virtually without hindrance and in an extremely short time during the course of the closing movement. The application of pressure is created by the transverse offset and corresponds approximately to the force with which the counter-pressure element 11 presses apart the spring-action contact elements 5a (for compensation of the transverse offset).
In this case, compensation of the transverse offset means that the contact faces 4b, 5b move into the closed position in a manner sliding against one another (or at a distance from one another in the event of overcompensation) and in the process make contact with one another, wherein the effective touch area in the contact region continuously increases in size (suddenly in the event of overcompensation in the closed position). The delaying effect of the friction between the contact areas 4b, 5b is negligible. The spreading process, which requires time and force, is completely dispensed with since the contact elements 5a are already pushed apart.
In the connection process, the stationary switching contact 4 which is in the form of a contact blade 4a enters the moving gap without reducing the connection speed, the gap being formed by the contact areas 5b of the contact elements 5a, wherein the spreading element 11a is successively replaced by the contact blade 4a.
However, it is also possible, in principle, for the transverse offset to not be completely compensated for (eliminated) by the counter-pressure element 11, but rather only be reduced, so that a (small) transverse offset remains. It is further possible for the transverse offset to be overcompensated, so that the contact areas 4b, 5b meet only in the closed position.
Spreading takes place during the course of the opening movement in the case of which the spreading element 11a initially butts against the contact elements 5a and is carried along until it stops against a stop on the right-hand side with reference to
In this way, the connection process of the switching contacts 4, 5 takes place with less force and at a higher switching speed. Relatively high switching speeds generally permit relatively high powers to be switched. The functional principle can be transferred to all switches which comprise at least one stationary and one moving switching contact 4, 5 which are generally in the form of blade contacts.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 215 479 | Aug 2012 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/067437 | 8/22/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/033039 | 3/6/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4321436 | McGarrity | Mar 1982 | A |
5834717 | Neumeyer | Nov 1998 | A |
Number | Date | Country |
---|---|---|
101882508 | Nov 2010 | CN |
714084 | Nov 1941 | DE |
1540591 | Jan 1970 | DE |
2437615 | Jan 1976 | DE |
3338244 | May 1985 | DE |
19612273 | Oct 1997 | DE |
102005060633 | Jun 2007 | DE |
2249359 | Nov 2010 | EP |
Entry |
---|
Chinese Office Action mailed Mar. 11, 2016. |
International Search Report PCT/ISA/210 for International Application No. PCT/EP2013/067437 Dated Dec. 10, 2013. |
Written Opinion of the International Searching Authority PCT/ISA/237 for International Application No. PCT/EP2013/067437 Dated Dec. 10, 2013. |
German Office Action mailed May 6, 2013 for corresponding German Application No. 102012215479.5. |
Number | Date | Country | |
---|---|---|---|
20150206667 A1 | Jul 2015 | US |