The invention relates to a method for coating a surface, in particular a micro-structured surface, of a component comprising different materials, in particular glass and silicon, wherein the surface is first activated and then coated, a coated component and a nebuliser having a coated component.
WO 91/14468 A1 and WO 97/12687 A1 each show a nebuliser which is marketed in the form of an inhaler under the brand name “Respimat” by Boehringer Ingelheim Pharma GmbH & Co. KG. The nebuliser is used for propellant-free administration of a metered quantity of a liquid medicament for inhalation. In the inhaler, liquid medicament formulations are stored in a reservoir and conveyed through a riser tube into a metering chamber from which they are finally expelled through a nozzle.
The nozzle has a liquid inlet side and a liquid outlet side. On the liquid inlet side is an opening through which the liquid medicament coming from the metering chamber is able to enter the nozzle. On the opposite side, the free end face of the nozzle, the liquid then emerges through two nozzle openings which are aligned such that the jets of liquid emerging from the openings strike one another and are thereby nebulised. The nozzle openings are formed in at least two superimposed plates, at least one of which has a microstructure, so that the two plates firmly attached to one another define on one side a liquid inlet, adjoining which is a channel and/or filter system that opens into the nozzle openings. The two plates with the microstructure and the nozzle openings are referred to as a uniblock in the context of the Respimat technology.
A nebuliser of this kind usually delivers formulations based on water or water/ethanol mixtures and within a short time is able to nebulise a small amount of the liquid medicament formulation, in the therapeutically required dose, into an aerosol suitable for therapeutic inhalation. Using the nebuliser it is possible to nebulise quantities of less than 100 microliters in, for example, one actuation to form an aerosol with an average particle size of less than 20 microns, such that the inhalable part of the aerosol already corresponds to the therapeutically effective amount.
In the nebuliser with Respimat technology the medicament solution is converted by a high pressure of up to 300 bar into a slowly moving aerosol mist destined for the lungs, which can then be breathed in by the patient. In rare cases, during the use of the nebuliser, residues of the formulation solution may adhere to the nozzle outlets as a contaminant, accumulate thereon and lead to clogging of the nozzle outlets, which may be accompanied by a deflection of the jets of liquid and a change in the fine particle fraction. Even if this effect is very rare in a nebuliser of the Respimat technology, there is a need to avoid deposits for reasons of quality control.
To avoid contamination of an outer surface of the nozzle system or a mouthpiece by precipitated liquid with fine particle fractions, DE 103 00 983 A1 proposes that the corresponding surfaces should be at least partially micro- or nano-structured.
The aim of the invention is to provide a method and a component as well as a nebuliser comprising a component of the kind described hereinbefore which is of self-cleaning design with a thin functionalising coating.
According to the invention the objective is achieved by a method which uses an oxidising solution, a basic solution or an acid-oxidising solution to activate the surface.
Surprisingly, it has been found that the solutions mentioned above can be used to activate surfaces of two different materials, particularly silicon and glass, which are joined together to form a monolithic component. In the literature, a special solution is always assigned to a particular material in order to produce the reactive groups needed for interface functionalisation, as the activation has to be matched to the particular substrate and specifically developed for different materials. For example, the activation of the surface of the component is carried out using a so-called piranha solution, namely the powerfully oxidising peroxomonosulphuric acid (concentrated sulphuric acid: hydrogen peroxide solution (30%) in the ratio 7:3), at 70° C. for 20 minutes. Alternatively, RCA cleaning may be used which is normally used for wafer cleaning in microelectronics. This uses the following solution: water:ammonia solution (25%):hydrogen peroxide solution (30%), in the ratio 5:1:1. The component is exposed to the solution at 75° C. for 20 minutes.
Preferably, a cell cleaner is used as the basic solution for activating the surface. Preferably the cell or glass cleaner made by Hellma GmbH & Co. KG, of Müllheim, Germany, known under the brand name “ Hellmanex solution” is used, as an aqueous 2% solution at 70° C. for 2×20 minutes in the ultrasound bath, although the manufacturer advises against the use of ultrasound in conjunction with their “Hellmanex solution”. The Hellmanex solution ensures activation which is effective on all kinds of materials, particularly silicon and glass, in order to produce reactive interfaces.
Expediently, before being activated, the surface is cleaned, particularly with isopropanol and water. The component is immersed in isopropanol for five minutes and in water for five minutes. According to one feature, the surface is treated in a solution of hydrofluoric acid after cleaning. It is bathed for about 20 minutes in an aqueous 3% hydrofluoric acid solution (HF).
According to a further feature, functional silanes in non-polar, aprotic or polar-protic solvents are used to coat the surface. The coating is very thin and is provided as a monolayer. The component with its activated surfaces is immersed for about two hours, in a toluene reaction, in a 0.1 to 1% solution of functional trichlorosilanes or dimethylmonochlorosilanes in dry non-polar, aprotic solvents such as toluene, benzene, carbon tetrachloride, n-alkanes (C5-C10) or the like. Then the component is dried in a nitrogen current and heat-treated in an oven for about one hour at about 120° C. After the heat-treatment excess and non-covalently bound residues are washed off the component using toluene and isopropanol. When the reaction is alcoholic, particularly isopropanolic, first of all a reaction solution has to be activated in order to be able to carry out interface functionalisation of the component with its activated surfaces of silicon and glass. A 0.1 to 1% solution of functional triethoxysilanes in 2-propanol/water/hydrochloric acid (HCl) in a ratio of 90 to 98:2 to 10:0.2 to 0.5 is stirred for about five hours at ambient temperature. Then the component with its activated surfaces is immersed in the solution for about two hours. After the component has been taken out of the solution the excess solution is carefully removed from the component, for example by allowing it to drip onto an absorbent non-woven fabric. Then the component is kept at a controlled 120° C. for about two hours. Any excess and non-covalently bound residues are washed off the component using isopropanol and water after the heat treatment. The following categories of materials are used to coat the surfaces: perfluoroalkylsilanes, alkylsilanes, aminoalkylsilanes, carboxylic acid silanes, trimethylammonium silanes of different chain lengths, particularly C4-C18, while the functional silanes used may be reactive trihalosilanes (R1—Si—R3, where R═Cl, Br), monohalodimethylsilanes (R1—Si(CH3)2R, where R═Cl, Br) or trialkoxysilanes (R1—Si—R3, where R═methoxy or ethoxy groups).
To ensure satisfactory wetting of the surfaces of the component that are to be coated, in order to coat the surfaces the component is advantageously treated with ultrasound in the reaction solution. The ultrasound treatment in particular ensures the exchange of the reaction solution in the capillaries of the component.
The objective is achieved in the component comprising at least two plates firmly joined together, at least one of which has a microstructure to form a channel and/or filter system and at least one nozzle opening adjoining it, by the fact that at least the surface of the microstructure has a coating which has been applied by the method described above.
As a result of this, any interaction of components and particles of the formulation expelled through the nozzle opening with the interfaces of the component is prevented. The free energy of the surface and hence its wettability is minimised in this area, resulting in a reduction in the immobilisation of residues of material on the nozzle outlet, i.e. in the immediate vicinity of the nozzle opening. When the component is used, the residues of material are expelled from the component and the coated component is self-cleaning, thanks to the use of the monomolecular, covalently bound non-stick coating. The functionalisation can be altered variably, depending on the interaction of different ingredients of the formulation with the interfaces of the component and may, for example, have hydrophilic or hydrophobic, positively or negatively charged, oleophillic or oleophobic properties.
One plate expediently consists of silicon while the other plate is glass. The silicon plate is provided with a microstructure, i.e. it comprises the channel or filter system and the nozzle openings and is adhesively bonded to the plate made of glass.
The component consists of the two plates of glass and silicon firmly joined together, while the plate consisting of silicon has one or more microstructured channels which connect the inlet side to the outlet side. On the outlet side there may be at least one round or non-round nozzle opening 2-10 μm deep and 5-15 μm wide, the depth preferably being 4.5 to 6.5 μm and the length being 7 to 9 μm. In the case of a plurality of nozzle openings, preferably two, the directions of flow through the nozzles in the component which essentially forms a nozzle body extend parallel to one another or are inclined towards one another in the direction of the nozzle opening. In a component having at least two nozzle openings on the outlet side, the directions of flow may slope towards one another at an angle of 20° to 160°, preferably at 60° to 150°, more preferably 70° to 100°. The nozzle openings are preferably arranged at a distance of 10 to 200 μm, more preferably at a distance of 10 to 100 μm, particularly preferably 30 to 70 μm. A distance of 50 μm is most preferred. The directions of flow meet accordingly in the vicinity of the nozzle openings. In the interests of simplicity an embodiment will be described hereinafter in which only the silicon plate of the component has relief-like microstructures, but not the plate made of glass. In other embodiments the situation is exactly the reverse, or both plates comprise these microstructures. On the silicon plate, a set of channels may be formed on the flat surface in order to create a plurality of filter passages (filter channels) in co-operation with the substantially flat surface of the glass plate. Additionally, the silicon plate may have a plenum chamber the ceiling of which is in turn formed by the glass plate. The plenum chamber may be provided in front of or behind the filter channels. It is also possible to have two such plenum chambers. Another set of channels on the substantially flat surface of the silicon plate which is provided after the filter channels forms, together with the glass plate, a set of channels that provide a plurality of nozzle outlet passages. Preferably, the total cross-sectional area of the nozzle outlets is 25 to 500 μm2. The entire cross-sectional area is preferably 30 to 200 μm2. In another embodiment this nozzle construction also has only a single nozzle opening. In other embodiments of this kind the filter channels and/or the plenum chamber are omitted. Preferably, the filter channels are formed by projections arranged in a zig-zag configuration. Thus, for example, at least two rows of the projections form a zig-zag configuration of this kind. A number of rows of projections may also be formed, the projections being laterally offset from one another in order to form additional rows that are skewed in relation to these rows, these additional rows mentioned above then forming the zig-zag configuration. In such embodiments the inlet and outlet may each comprise a longitudinal slot for unfiltered or filtered fluid, each of the slots being substantially the same width as the filter and substantially the same height as the projections on the inlet and outlet sides of the filter. The cross-section of the passages formed by the projections may be perpendicular to the direction of flow of the fluid and may decrease from one row to the next, viewed in the direction of flow. Also, the projections that are arranged closer to the inlet side of the filter may be larger than the projections that are arranged closer to the outlet side of the filter. In addition, the spacing between the silicon plate and the glass plate may become narrower in the region from the inlet side to the outlet side. The zig-zag configuration which is formed by at least two rows of projections has an angle of inclination of preferably 20° to 250°. Further details of this construction of the component can be found in WO 94/07607.
Finally, the objective is achieved with a nebuliser for delivering a specific amount of a fluid, in particular a fluid containing a medicament, as an aerosol, using the component of the kind described hereinbefore.
It will be understood that the features mentioned above and those to be explained hereinafter may be used not only in the particular combinations stated but also in other combinations. The scope of the invention is defined only by the claims.
The invention is hereinafter described in more detail by means of an embodiment by way of example, by reference to the attached drawings, wherein:
An upper housing part 51 of the nebuliser comprises a pump housing 52 on the end of which is mounted a holder 53 for a nebuliser nozzle. In the holder 53 is a recess 54 that widens outs and the component 55 in the form of a nozzle body. A hollow piston fixed in a power take-off flange 56 of a locking clamping mechanism projects partly into a cylinder of the pump housing 52. At its end the hollow piston 57 carries a valve body 58. The hollow piston 57 is sealed off by a gasket 59. Inside the upper housing part 51 is a stop 60 of the power take-off flange 56 on which a compression spring 68 rests. After the tensioning of the compression spring 68 a locking member 62 slides between a stop 61 on the power take-off flange 56 and a support 63 in the upper housing part 51. An actuating button 64 is connected to the locking member 62. The upper housing part 51 ends in a mouthpiece 65 and is closed off by a removable protective cap 66.
A spring housing 67 with the compression spring 68 is rotatably mounted on the upper housing part 51 by means of snap-fit lugs 69 and a rotary bearing. A lower housing part 70 is pushed over the spring housing 67 and inside the spring housing 67 is a storage container 71 for fluid 72 which is to be nebulised. The storage container 71 is closed off by a stopper 73 through which the hollow piston 57 projects into the storage container 71 and dips its end into the fluid 72, i.e. the supply of active substance solution.
A spindle 74 for a mechanical counter (optional) is provided in an outer surface of the spring housing 67. A drive pinion 75 is located at the end of the spindle 74 facing the upper housing part 51. On the spindle 74 is a slider 76.
The component 55—a so-called uniblock—comprises two plates 40, 41 firmly joined together, of which one plate 40 is made of silicon and has a microstructure 42 for forming a channel or filter system and an adjacent nozzle opening 43. The silicon plate 40 is firmly attached to the glass plate 41 on the side having the microstructure 42.
At least the surface 44 of the microstructure 42 has a coating consisting of functional silanes which prevents any interaction of ingredients and particles of the formulation expelled through the nozzle opening 43 with the interfaces of the component 55. During the use of the nebuliser comprising the component 55, the material residues are expelled from the component 55 and the coated component 55 is self-cleaning thanks to the use of the monomolecular, covalently bound non-stick coating.
The surfaces 44 of the component 55, particularly the microstructure 42, are first cleaned by dipping the component 5 first into isopropanol for five minutes and then into water for five minutes. Then the component 55 is bathed for about 20 minutes in an aqueous 3% hydrofluoric acid solution (HF).
The activation of the surface 44 itself is carried out using a cell cleaner, particularly the cell or glass cleaner known by the brand name “Hellmanex solution” and produced by Hellma GmbH & Co. KG, of Müllheim, Germany, as an aqueous 2% solution, at 70° C. for 2×20 minutes in an ultrasound bath.
For functionalisation, 1H,1H,2H,2H-perfluorooctyltriethoxysilane is used, for example, which is marketed for example under the brand name Dynasylan by Evonik AG of Düsseldorf. After the component 55 has been exposed for about two hours to a solution containing the functional silane under the effect of ultrasound, the excess solution is allowed to drip off the component 55 and the component is treated for about one to two hours at 120° C. in an oven. After the heat treatment any excess and non-covalently bound residues are washed off the component 55 using isopropanol and water.
Number | Date | Country | Kind |
---|---|---|---|
09156940 | Mar 2009 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/053668 | 3/22/2010 | WO | 00 | 11/7/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/112358 | 10/7/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1828864 | Hopkins | Oct 1931 | A |
2015970 | Schoene | Oct 1935 | A |
2127401 | Gillican | Aug 1938 | A |
2161071 | McGrath et al. | Jun 1939 | A |
2321428 | Schloz | Jun 1943 | A |
2329311 | Waters | Sep 1943 | A |
2362103 | Smith | Nov 1944 | A |
2651303 | Johnson et al. | Sep 1953 | A |
2720969 | Kendall | Oct 1955 | A |
2793776 | Lipari | May 1957 | A |
2974880 | Stewart et al. | Mar 1961 | A |
3032823 | Sherman et al. | May 1962 | A |
3157179 | Allen et al. | Nov 1964 | A |
3172568 | Modderno | Mar 1965 | A |
3196587 | Hayward et al. | Jul 1965 | A |
3223289 | Bouet | Dec 1965 | A |
3299603 | Shaw | Jan 1967 | A |
3354883 | Southerland | Nov 1967 | A |
3440144 | Anderson et al. | Apr 1969 | A |
3457694 | Tatibana | Jul 1969 | A |
3491803 | Galik | Jan 1970 | A |
3502035 | Fedit | Mar 1970 | A |
3580249 | Takaoka | May 1971 | A |
3590557 | Vogel | Jul 1971 | A |
3632743 | Geller et al. | Jan 1972 | A |
3655096 | Easter | Apr 1972 | A |
3674060 | Ruekberg | Jul 1972 | A |
3675825 | Morane | Jul 1972 | A |
3802604 | Morane et al. | Apr 1974 | A |
3820698 | Franz | Jun 1974 | A |
3842836 | Ogle | Oct 1974 | A |
3858580 | Ogle | Jan 1975 | A |
3861851 | Schiemann | Jan 1975 | A |
3870147 | Orth | Mar 1975 | A |
3924741 | Kachur et al. | Dec 1975 | A |
3933279 | Maier | Jan 1976 | A |
3946732 | Hurscham | Mar 1976 | A |
3949751 | Birch et al. | Apr 1976 | A |
3951310 | Steiman | Apr 1976 | A |
3953995 | Haswell et al. | May 1976 | A |
3973603 | Franz | Aug 1976 | A |
4012472 | Lindsey | Mar 1977 | A |
4031892 | Hurschman | Jun 1977 | A |
4036439 | Green | Jul 1977 | A |
4048997 | Raghavachari et al. | Sep 1977 | A |
4067499 | Cohen | Jan 1978 | A |
4094317 | Wasnich | Jun 1978 | A |
4120995 | Phipps et al. | Oct 1978 | A |
4126559 | Cooper | Nov 1978 | A |
4153689 | Hirai et al. | May 1979 | A |
4174035 | Wiegner | Nov 1979 | A |
4177938 | Brina | Dec 1979 | A |
4178928 | Tischlinger | Dec 1979 | A |
4195730 | Hunt | Apr 1980 | A |
4245788 | Wright | Jan 1981 | A |
4275840 | Staar | Jun 1981 | A |
4315570 | Silver et al. | Feb 1982 | A |
4338765 | Ohmori et al. | Jul 1982 | A |
4377106 | Workman et al. | Mar 1983 | A |
4456016 | Nowacki et al. | Jun 1984 | A |
4467965 | Skinner | Aug 1984 | A |
4476116 | Anik | Oct 1984 | A |
4515586 | Mendenhall et al. | May 1985 | A |
4516967 | Kopfer | May 1985 | A |
4603794 | DeFord et al. | Aug 1986 | A |
4677975 | Edgar et al. | Jul 1987 | A |
4727985 | McNeirney et al. | Mar 1988 | A |
4749082 | Gardiner et al. | Jun 1988 | A |
4796614 | Nowacki et al. | Jan 1989 | A |
4805377 | Carter | Feb 1989 | A |
4813210 | Masuda et al. | Mar 1989 | A |
4821923 | Skorka | Apr 1989 | A |
4840017 | Miller et al. | Jun 1989 | A |
4863720 | Burghart et al. | Sep 1989 | A |
4868582 | Dreinhoff | Sep 1989 | A |
4885164 | Thurow | Dec 1989 | A |
4905450 | Hansen et al. | Mar 1990 | A |
4926613 | Hansen | May 1990 | A |
4951661 | Sladek | Aug 1990 | A |
4952310 | McMahan et al. | Aug 1990 | A |
4964540 | Katz | Oct 1990 | A |
RE33444 | Lerner | Nov 1990 | E |
4973318 | Holm et al. | Nov 1990 | A |
4979941 | Ogle, II | Dec 1990 | A |
4982875 | Pozzi et al. | Jan 1991 | A |
5014492 | Fiorini et al. | May 1991 | A |
5025957 | Ranalletta et al. | Jun 1991 | A |
5059187 | Sperry et al. | Oct 1991 | A |
5060791 | Zulauf | Oct 1991 | A |
5067655 | Farago et al. | Nov 1991 | A |
5156918 | Marks et al. | Oct 1992 | A |
5174366 | Nagakura et al. | Dec 1992 | A |
5207217 | Cocozza et al. | May 1993 | A |
5230884 | Evans et al. | Jul 1993 | A |
5237797 | Varlet | Aug 1993 | A |
5246142 | DiPalma et al. | Sep 1993 | A |
5261565 | Drobish et al. | Nov 1993 | A |
5263842 | Fealey | Nov 1993 | A |
5271153 | Reiboldt et al. | Dec 1993 | A |
5282304 | Reiboldt et al. | Feb 1994 | A |
5282549 | Scholz et al. | Feb 1994 | A |
5284133 | Burns et al. | Feb 1994 | A |
5289948 | Moss et al. | Mar 1994 | A |
5339990 | Wilder | Aug 1994 | A |
5352196 | Haber et al. | Oct 1994 | A |
5380281 | Tomellini et al. | Jan 1995 | A |
5385140 | Smith | Jan 1995 | A |
5394866 | Ritson et al. | Mar 1995 | A |
5408994 | Wass et al. | Apr 1995 | A |
5433343 | Meshberg | Jul 1995 | A |
5435282 | Haber et al. | Jul 1995 | A |
5435884 | Simmons et al. | Jul 1995 | A |
5451569 | Wong et al. | Sep 1995 | A |
5456522 | Beach | Oct 1995 | A |
5456533 | Streiff et al. | Oct 1995 | A |
5472143 | Bartels et al. | Dec 1995 | A |
5482030 | Klein | Jan 1996 | A |
5487378 | Robertson et al. | Jan 1996 | A |
5497944 | Weston et al. | Mar 1996 | A |
5499750 | Manifold | Mar 1996 | A |
5499751 | Meyer | Mar 1996 | A |
5503869 | Van Oort | Apr 1996 | A |
5509404 | Lloyd et al. | Apr 1996 | A |
5518147 | Peterson et al. | May 1996 | A |
5533994 | Meyer | Jul 1996 | A |
5541569 | Jang | Jul 1996 | A |
5544646 | Lloyd et al. | Aug 1996 | A |
5547094 | Bartels et al. | Aug 1996 | A |
5569191 | Meyer | Oct 1996 | A |
5574006 | Yanagawa | Nov 1996 | A |
5579760 | Kohler | Dec 1996 | A |
5584285 | Salter et al. | Dec 1996 | A |
5593069 | Jinks | Jan 1997 | A |
5599297 | Chin et al. | Feb 1997 | A |
5603943 | Yanagawa | Feb 1997 | A |
5614172 | Geimer | Mar 1997 | A |
5622162 | Johansson et al. | Apr 1997 | A |
5622163 | Jewett et al. | Apr 1997 | A |
5643868 | Weiner et al. | Jul 1997 | A |
5662098 | Yoshida | Sep 1997 | A |
5662271 | Weston et al. | Sep 1997 | A |
5676930 | Jager et al. | Oct 1997 | A |
5685846 | Michaels, Jr. | Nov 1997 | A |
5697242 | Halasz et al. | Dec 1997 | A |
5709202 | Lloyd et al. | Jan 1998 | A |
5722598 | Werding | Mar 1998 | A |
5738087 | King | Apr 1998 | A |
5740967 | Simmons et al. | Apr 1998 | A |
5763396 | Weiner et al. | Jun 1998 | A |
5775321 | Alband | Jul 1998 | A |
5782345 | Guasch et al. | Jul 1998 | A |
5827262 | Neftel et al. | Oct 1998 | A |
5829435 | Rubsamen et al. | Nov 1998 | A |
5833088 | Kladders et al. | Nov 1998 | A |
5848588 | Foley et al. | Dec 1998 | A |
5868287 | Kurokawa et al. | Feb 1999 | A |
5871010 | Datta | Feb 1999 | A |
5881718 | Mortensen et al. | Mar 1999 | A |
5884620 | Gonda et al. | Mar 1999 | A |
5902298 | Niedospial, Jr. et al. | May 1999 | A |
5934272 | Lloyd et al. | Aug 1999 | A |
5935101 | Kato et al. | Aug 1999 | A |
5941244 | Yamazaki et al. | Aug 1999 | A |
5950016 | Tanaka | Sep 1999 | A |
5950403 | Yamaguchi et al. | Sep 1999 | A |
5951882 | Simmons et al. | Sep 1999 | A |
5964416 | Jaeger et al. | Oct 1999 | A |
5975370 | Durliat | Nov 1999 | A |
5997263 | Van Lintel et al. | Dec 1999 | A |
6041777 | Faithfull et al. | Mar 2000 | A |
6041969 | Parise | Mar 2000 | A |
6053368 | Geimer | Apr 2000 | A |
6062430 | Fuchs | May 2000 | A |
6098618 | Jennings et al. | Aug 2000 | A |
6109479 | Ruckdeschel | Aug 2000 | A |
6110247 | Birmingham et al. | Aug 2000 | A |
6116233 | Denyer et al. | Sep 2000 | A |
6119853 | Garrill et al. | Sep 2000 | A |
6120492 | Finch et al. | Sep 2000 | A |
6123068 | Lloyd et al. | Sep 2000 | A |
6131566 | Ashurst et al. | Oct 2000 | A |
6145703 | Opperman | Nov 2000 | A |
6149054 | Cirrillo et al. | Nov 2000 | A |
6152296 | Shih | Nov 2000 | A |
6171972 | Mehregany et al. | Jan 2001 | B1 |
6176442 | Eicher et al. | Jan 2001 | B1 |
6179118 | Garrill et al. | Jan 2001 | B1 |
6186409 | Srinath et al. | Feb 2001 | B1 |
6199766 | Fox et al. | Mar 2001 | B1 |
6223933 | Hochrainer et al. | May 2001 | B1 |
6224568 | Morimoto et al. | May 2001 | B1 |
6237589 | Denyer et al. | May 2001 | B1 |
6259654 | de la Huerga | Jul 2001 | B1 |
6267154 | Felicelli et al. | Jul 2001 | B1 |
6279786 | de Pous et al. | Aug 2001 | B1 |
6302101 | Py | Oct 2001 | B1 |
6315173 | Di Giovanni et al. | Nov 2001 | B1 |
6319943 | Joshi et al. | Nov 2001 | B1 |
6336453 | Scarrott et al. | Jan 2002 | B1 |
6341718 | Schilthuizen et al. | Jan 2002 | B1 |
6349856 | Chastel | Feb 2002 | B1 |
6352152 | Anderson et al. | Mar 2002 | B1 |
6352181 | Eberhard et al. | Mar 2002 | B1 |
6363932 | Forchione et al. | Apr 2002 | B1 |
6375048 | van der Meer et al. | Apr 2002 | B1 |
6392962 | Wyatt | May 2002 | B1 |
6395331 | Yan et al. | May 2002 | B1 |
6401710 | Scheuch et al. | Jun 2002 | B1 |
6401987 | Oechsel et al. | Jun 2002 | B1 |
6402055 | Jaeger et al. | Jun 2002 | B1 |
6405872 | Ruther et al. | Jun 2002 | B1 |
6412659 | Kneer | Jul 2002 | B1 |
6419167 | Fuchs | Jul 2002 | B1 |
6423298 | McNamara et al. | Jul 2002 | B2 |
6427682 | Klimowicz et al. | Aug 2002 | B1 |
6457658 | Srinath et al. | Oct 2002 | B2 |
6464108 | Corba | Oct 2002 | B2 |
6481435 | Hochrainer et al. | Nov 2002 | B2 |
6491897 | Freund et al. | Dec 2002 | B1 |
6503362 | Bartels et al. | Jan 2003 | B1 |
6513519 | Gallem | Feb 2003 | B2 |
6543448 | Smith et al. | Apr 2003 | B1 |
6548647 | Dietz et al. | Apr 2003 | B2 |
6550477 | Casper et al. | Apr 2003 | B1 |
6565743 | Poirier et al. | May 2003 | B1 |
6578741 | Ritsche et al. | Jun 2003 | B2 |
6581596 | Truitt et al. | Jun 2003 | B1 |
6584976 | Japuntich et al. | Jul 2003 | B2 |
6606990 | Stapleton et al. | Aug 2003 | B2 |
6620438 | Pairet et al. | Sep 2003 | B2 |
6626309 | Jansen et al. | Sep 2003 | B1 |
6640805 | Castro et al. | Nov 2003 | B2 |
6641782 | Mauchan et al. | Nov 2003 | B1 |
6669176 | Rock | Dec 2003 | B2 |
6679254 | Rand et al. | Jan 2004 | B1 |
6685691 | Freund et al. | Feb 2004 | B1 |
6698421 | Attolini | Mar 2004 | B2 |
6706726 | Meissner et al. | Mar 2004 | B2 |
6708846 | Fuchs et al. | Mar 2004 | B1 |
6725858 | Loescher | Apr 2004 | B2 |
6729328 | Goldemann | May 2004 | B2 |
6732731 | Tseng | May 2004 | B1 |
6745763 | Webb | Jun 2004 | B2 |
6779520 | Genova et al. | Aug 2004 | B2 |
6789702 | O'Connor et al. | Sep 2004 | B2 |
6792945 | Davies et al. | Sep 2004 | B2 |
6823862 | McNaughton | Nov 2004 | B2 |
6825441 | Katooka et al. | Nov 2004 | B2 |
6846413 | Kadel et al. | Jan 2005 | B1 |
6866039 | Wright et al. | Mar 2005 | B1 |
6889690 | Crowder et al. | May 2005 | B2 |
6890517 | Drechsel et al. | May 2005 | B2 |
6915901 | Feinberg et al. | Jul 2005 | B2 |
6929004 | Bonney et al. | Aug 2005 | B1 |
6932962 | Backstrom et al. | Aug 2005 | B1 |
6942127 | Raats | Sep 2005 | B2 |
6964759 | Lewis et al. | Nov 2005 | B2 |
6977042 | Kadel et al. | Dec 2005 | B2 |
6978916 | Smith | Dec 2005 | B2 |
6986346 | Hochrainer et al. | Jan 2006 | B2 |
6988496 | Eicher et al. | Jan 2006 | B1 |
6994083 | Foley et al. | Feb 2006 | B2 |
7040311 | Hochrainer et al. | May 2006 | B2 |
7066408 | Sugimoto et al. | Jun 2006 | B2 |
7090093 | Hochrainer et al. | Aug 2006 | B2 |
7131441 | Keller et al. | Nov 2006 | B1 |
7258716 | Shekarriz et al. | Aug 2007 | B2 |
7314187 | Hochrainer et al. | Jan 2008 | B2 |
7331340 | Barney | Feb 2008 | B2 |
7341208 | Peters et al. | Mar 2008 | B2 |
7380575 | Stricklin | Jun 2008 | B2 |
7417051 | Banholzer et al. | Aug 2008 | B2 |
7451876 | Bossi et al. | Nov 2008 | B2 |
7470422 | Freund et al. | Dec 2008 | B2 |
7556037 | Klein | Jul 2009 | B2 |
7559597 | Mori | Jul 2009 | B2 |
7571722 | Wuttke et al. | Aug 2009 | B2 |
7579358 | Boeck et al. | Aug 2009 | B2 |
7611694 | Schmidt | Nov 2009 | B2 |
7611709 | Bassarab et al. | Nov 2009 | B2 |
7621266 | Kladders et al. | Nov 2009 | B2 |
7645383 | Kadel et al. | Jan 2010 | B2 |
7652030 | Moesgaard et al. | Jan 2010 | B2 |
7665461 | Zierenberg et al. | Feb 2010 | B2 |
7681811 | Geser et al. | Mar 2010 | B2 |
7686014 | Boehm et al. | Mar 2010 | B2 |
7717299 | Greiner-Perth | May 2010 | B2 |
7723306 | Bassarab et al. | May 2010 | B2 |
7743945 | Lu et al. | Jun 2010 | B2 |
7779838 | Hetzer et al. | Aug 2010 | B2 |
7802568 | Eicher et al. | Sep 2010 | B2 |
7819342 | Spallek et al. | Oct 2010 | B2 |
7823584 | Geser et al. | Nov 2010 | B2 |
7837235 | Geser et al. | Nov 2010 | B2 |
7849851 | Zierenberg et al. | Dec 2010 | B2 |
7896264 | Eicher et al. | Mar 2011 | B2 |
7980243 | Hochrainer | Jul 2011 | B2 |
7994188 | Disse | Aug 2011 | B2 |
8062626 | Freund et al. | Nov 2011 | B2 |
8167171 | Moretti | May 2012 | B2 |
8298622 | Nakayama et al. | Oct 2012 | B2 |
8479725 | Hausmann et al. | Jul 2013 | B2 |
8495901 | Hahn et al. | Jul 2013 | B2 |
8650840 | Holakovsky et al. | Feb 2014 | B2 |
8651338 | Leak et al. | Feb 2014 | B2 |
8656910 | Boeck et al. | Feb 2014 | B2 |
8733341 | Boeck et al. | May 2014 | B2 |
8734392 | Stadelhofer | May 2014 | B2 |
8950393 | Holakovsky et al. | Feb 2015 | B2 |
8960188 | Bach et al. | Feb 2015 | B2 |
9027854 | Moser et al. | May 2015 | B2 |
9192734 | Hausmann et al. | Nov 2015 | B2 |
9238031 | Schmelzer et al. | Jan 2016 | B2 |
20010008632 | Freund et al. | Jul 2001 | A1 |
20010028308 | De La Huerga | Oct 2001 | A1 |
20010032643 | Hochrainer et al. | Oct 2001 | A1 |
20010035182 | Rubin et al. | Nov 2001 | A1 |
20020000225 | Schuler et al. | Jan 2002 | A1 |
20020007155 | Freund et al. | Jan 2002 | A1 |
20020046751 | MacRae et al. | Apr 2002 | A1 |
20020060255 | Benoist | May 2002 | A1 |
20020074429 | Hettrich et al. | Jun 2002 | A1 |
20020079285 | Jansen et al. | Jun 2002 | A1 |
20020092523 | Connelly et al. | Jul 2002 | A1 |
20020111363 | Drechsel et al. | Aug 2002 | A1 |
20020129812 | Litherland et al. | Sep 2002 | A1 |
20020137764 | Drechsel et al. | Sep 2002 | A1 |
20020176788 | Moutafis et al. | Nov 2002 | A1 |
20030039915 | Holt et al. | Feb 2003 | A1 |
20030064032 | Lamche et al. | Apr 2003 | A1 |
20030066524 | Hochrainer et al. | Apr 2003 | A1 |
20030085254 | Katooka et al. | May 2003 | A1 |
20030098023 | Drachmann et al. | May 2003 | A1 |
20030106827 | Cheu et al. | Jun 2003 | A1 |
20030145849 | Drinan et al. | Aug 2003 | A1 |
20030178020 | Scarrott | Sep 2003 | A1 |
20030181478 | Drechsel et al. | Sep 2003 | A1 |
20030183225 | Knudsen | Oct 2003 | A1 |
20030187387 | Wirt et al. | Oct 2003 | A1 |
20030191151 | Chaudry et al. | Oct 2003 | A1 |
20030194379 | Brugger et al. | Oct 2003 | A1 |
20030196660 | Haveri | Oct 2003 | A1 |
20030209238 | Peters et al. | Nov 2003 | A1 |
20030226907 | Geser et al. | Dec 2003 | A1 |
20040004138 | Hettrich et al. | Jan 2004 | A1 |
20040010239 | Hochrainer et al. | Jan 2004 | A1 |
20040015126 | Zierenberg et al. | Jan 2004 | A1 |
20040019073 | Drechsel et al. | Jan 2004 | A1 |
20040055907 | Marco | Mar 2004 | A1 |
20040060476 | Sirejacob | Apr 2004 | A1 |
20040069799 | Gee et al. | Apr 2004 | A1 |
20040092428 | Chen et al. | May 2004 | A1 |
20040094147 | Schyra et al. | May 2004 | A1 |
20040134494 | Papania et al. | Jul 2004 | A1 |
20040134824 | Chan et al. | Jul 2004 | A1 |
20040139700 | Powell et al. | Jul 2004 | A1 |
20040143235 | Freund et al. | Jul 2004 | A1 |
20040164186 | Kladders et al. | Aug 2004 | A1 |
20040166065 | Schmidt | Aug 2004 | A1 |
20040182867 | Hochrainer et al. | Sep 2004 | A1 |
20040184994 | DeStefano et al. | Sep 2004 | A1 |
20040194524 | Jentzsch | Oct 2004 | A1 |
20040210199 | Atterbury et al. | Oct 2004 | A1 |
20040231667 | Horton et al. | Nov 2004 | A1 |
20050028815 | Deaton et al. | Feb 2005 | A1 |
20050028816 | Fishman et al. | Feb 2005 | A1 |
20050061314 | Davies et al. | Mar 2005 | A1 |
20050089478 | Govind et al. | Apr 2005 | A1 |
20050098172 | Anderson | May 2005 | A1 |
20050126469 | Lu | Jun 2005 | A1 |
20050131357 | Denton et al. | Jun 2005 | A1 |
20050158394 | Staniforth et al. | Jul 2005 | A1 |
20050159441 | Hochrainer et al. | Jul 2005 | A1 |
20050183718 | Wuttke et al. | Aug 2005 | A1 |
20050191246 | Bechtold-Peters et al. | Sep 2005 | A1 |
20050194472 | Geser et al. | Sep 2005 | A1 |
20050239778 | Konetzki et al. | Oct 2005 | A1 |
20050247305 | Zierenberg et al. | Nov 2005 | A1 |
20050250704 | Bassarab et al. | Nov 2005 | A1 |
20050250705 | Bassarab et al. | Nov 2005 | A1 |
20050255119 | Bassarab et al. | Nov 2005 | A1 |
20050263618 | Spallek et al. | Dec 2005 | A1 |
20050268909 | Bonney et al. | Dec 2005 | A1 |
20050268915 | Wassenaar et al. | Dec 2005 | A1 |
20050269359 | Raats | Dec 2005 | A1 |
20060002863 | Schmelzer et al. | Jan 2006 | A1 |
20060016449 | Eicher et al. | Jan 2006 | A1 |
20060035874 | Lulla et al. | Feb 2006 | A1 |
20060037612 | Herder et al. | Feb 2006 | A1 |
20060067952 | Chen | Mar 2006 | A1 |
20060086828 | Bougamont et al. | Apr 2006 | A1 |
20060150971 | Lee et al. | Jul 2006 | A1 |
20060196500 | Hochrainer et al. | Sep 2006 | A1 |
20060225734 | Sagaser et al. | Oct 2006 | A1 |
20060239886 | Nakayama et al. | Oct 2006 | A1 |
20060239930 | Lamche et al. | Oct 2006 | A1 |
20060279588 | Yearworth et al. | Dec 2006 | A1 |
20060282045 | Wilkinson et al. | Dec 2006 | A1 |
20060285987 | Jaeger et al. | Dec 2006 | A1 |
20060289002 | Hetzer et al. | Dec 2006 | A1 |
20060293293 | Muller et al. | Dec 2006 | A1 |
20070062518 | Geser et al. | Mar 2007 | A1 |
20070062519 | Wuttke et al. | Mar 2007 | A1 |
20070062979 | Dunne | Mar 2007 | A1 |
20070090205 | Kunze et al. | Apr 2007 | A1 |
20070090576 | Geser et al. | Apr 2007 | A1 |
20070107720 | Boeck et al. | May 2007 | A1 |
20070119449 | Boehm et al. | May 2007 | A1 |
20070137643 | Bonney et al. | Jun 2007 | A1 |
20070163574 | Rohrschneider et al. | Jul 2007 | A1 |
20070183982 | Berkel et al. | Aug 2007 | A1 |
20070210121 | Stadelhofer et al. | Sep 2007 | A1 |
20070221211 | Sagalovich | Sep 2007 | A1 |
20070264437 | Zimmermann et al. | Nov 2007 | A1 |
20070272763 | Dunne et al. | Nov 2007 | A1 |
20070298116 | Bechtold-Peters et al. | Dec 2007 | A1 |
20080017192 | Southby et al. | Jan 2008 | A1 |
20080029085 | Lawrence et al. | Feb 2008 | A1 |
20080060640 | Waldner et al. | Mar 2008 | A1 |
20080083408 | Hodson et al. | Apr 2008 | A1 |
20080092885 | von Schuckmann | Apr 2008 | A1 |
20080156321 | Bowman et al. | Jul 2008 | A1 |
20080197045 | Metzger et al. | Aug 2008 | A1 |
20080249459 | Godfrey et al. | Oct 2008 | A1 |
20080265198 | Warby | Oct 2008 | A1 |
20080283553 | Cox et al. | Nov 2008 | A1 |
20080299049 | Stangl | Dec 2008 | A1 |
20080308580 | Gaydos et al. | Dec 2008 | A1 |
20090032427 | Cheu et al. | Feb 2009 | A1 |
20090060764 | Mitzlaff et al. | Mar 2009 | A1 |
20090075990 | Schmidt | Mar 2009 | A1 |
20090114215 | Boeck et al. | May 2009 | A1 |
20090166379 | Wright et al. | Jul 2009 | A1 |
20090170839 | Schmidt | Jul 2009 | A1 |
20090185983 | Freund et al. | Jul 2009 | A1 |
20090197841 | Kreher et al. | Aug 2009 | A1 |
20090202447 | Kreher et al. | Aug 2009 | A1 |
20090211576 | Lehtonen et al. | Aug 2009 | A1 |
20090221626 | Schmidt | Sep 2009 | A1 |
20090235924 | Holakovsky et al. | Sep 2009 | A1 |
20090272664 | Marshall et al. | Nov 2009 | A1 |
20090293870 | Brunnberg et al. | Dec 2009 | A1 |
20090306065 | Schmidt | Dec 2009 | A1 |
20090308772 | Abrams | Dec 2009 | A1 |
20090314287 | Spallek et al. | Dec 2009 | A1 |
20090317337 | Schmidt | Dec 2009 | A1 |
20100018524 | Jinks et al. | Jan 2010 | A1 |
20100018997 | Faneca Llesera | Jan 2010 | A1 |
20100044393 | Moretti | Feb 2010 | A1 |
20100056559 | Schmelzer et al. | Mar 2010 | A1 |
20100084531 | Schuchman | Apr 2010 | A1 |
20100095957 | Corbacho | Apr 2010 | A1 |
20100144784 | Schmelzer et al. | Jun 2010 | A1 |
20100168710 | Braithwaite | Jul 2010 | A1 |
20100237102 | Margheritis | Sep 2010 | A1 |
20100242557 | Spreitzer et al. | Sep 2010 | A1 |
20100242954 | Hahn et al. | Sep 2010 | A1 |
20100258119 | Dams | Oct 2010 | A1 |
20100313884 | Elliman | Dec 2010 | A1 |
20110005517 | Boeck et al. | Jan 2011 | A1 |
20110041842 | Bradshaw et al. | Feb 2011 | A1 |
20110168175 | Dunne et al. | Jul 2011 | A1 |
20110239594 | Nottingham et al. | Oct 2011 | A1 |
20110245780 | Helmer et al. | Oct 2011 | A1 |
20110268668 | Lamche et al. | Nov 2011 | A1 |
20110277753 | Dunne et al. | Nov 2011 | A1 |
20110290239 | Bach et al. | Dec 2011 | A1 |
20110290242 | Bach et al. | Dec 2011 | A1 |
20110290243 | Bach et al. | Dec 2011 | A1 |
20120090603 | Dunne et al. | Apr 2012 | A1 |
20120132199 | Kiesewetter | May 2012 | A1 |
20120138049 | Wachtel | Jun 2012 | A1 |
20120138713 | Schuy et al. | Jun 2012 | A1 |
20120260913 | Bach et al. | Oct 2012 | A1 |
20120325204 | Holakovsky et al. | Dec 2012 | A1 |
20130012908 | Yeung | Jan 2013 | A1 |
20130056888 | Holakovsky et al. | Mar 2013 | A1 |
20130125880 | Holakovsky et al. | May 2013 | A1 |
20130125881 | Holakovsky et al. | May 2013 | A1 |
20130126389 | Holakovsky et al. | May 2013 | A1 |
20130206136 | Herrmann et al. | Aug 2013 | A1 |
20130269687 | Besseler et al. | Oct 2013 | A1 |
20140121234 | Kreher et al. | May 2014 | A1 |
20140190472 | Holakovsky et al. | Jul 2014 | A1 |
20140228397 | Schmelzer et al. | Aug 2014 | A1 |
20140331994 | Holakovsky et al. | Nov 2014 | A1 |
20150040890 | Besseler et al. | Feb 2015 | A1 |
20150040893 | Besseler et al. | Feb 2015 | A1 |
20150041558 | Besseler et al. | Feb 2015 | A1 |
20150114387 | Bach et al. | Apr 2015 | A1 |
20150122247 | Besseler et al. | May 2015 | A1 |
20150258021 | Kreher et al. | Sep 2015 | A1 |
20150306087 | Schmelzer et al. | Oct 2015 | A1 |
20150320947 | Eicher et al. | Nov 2015 | A1 |
20150320948 | Eicher et al. | Nov 2015 | A1 |
20160095992 | Wachtel | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2005201364 | Jul 2006 | AU |
1094549 | Jan 1981 | CA |
2233981 | Apr 1997 | CA |
2237853 | Jun 1997 | CA |
2251828 | Oct 1997 | CA |
2275392 | Jul 1998 | CA |
2297174 | Feb 1999 | CA |
2343123 | Apr 2000 | CA |
2434872 | Aug 2002 | CA |
2497680 | Mar 2004 | CA |
2513167 | Oct 2004 | CA |
2557020 | Sep 2005 | CA |
2653183 | Dec 2007 | CA |
2653422 | Dec 2007 | CA |
1125426 | Jun 1996 | CN |
1849174 | Oct 2006 | CN |
101247897 | Aug 2008 | CN |
1653651 | Jul 1971 | DE |
2754100 | Jun 1978 | DE |
4117078 | Nov 1992 | DE |
19625027 | Jan 1997 | DE |
19615422 | Nov 1997 | DE |
19653969 | Jun 1998 | DE |
19902844 | Nov 1999 | DE |
10007591 | Nov 2000 | DE |
10104367 | Aug 2002 | DE |
10300983 | Jul 2004 | DE |
102004031673 | Jan 2006 | DE |
202006017793 | Jan 2007 | DE |
01102006025871 | Dec 2007 | DE |
83175 | Jul 1957 | DK |
140801 | Nov 1979 | DK |
0018609 | Nov 1980 | EP |
0289332 | Nov 1988 | EP |
0289336 | Nov 1988 | EP |
0354507 | Feb 1990 | EP |
0364235 | Apr 1990 | EP |
0372777 | Jun 1990 | EP |
0386800 | Sep 1990 | EP |
0412524 | Feb 1991 | EP |
0505123 | Sep 1992 | EP |
0520571 | Dec 1992 | EP |
0622311 | Nov 1994 | EP |
0642992 | Mar 1995 | EP |
0679443 | Nov 1995 | EP |
0735048 | Oct 1996 | EP |
0811430 | Mar 1997 | EP |
0778221 | Jun 1997 | EP |
0845253 | Jun 1998 | EP |
0845265 | Jun 1998 | EP |
0860210 | Aug 1998 | EP |
0916428 | May 1999 | EP |
0965355 | Dec 1999 | EP |
0970751 | Jan 2000 | EP |
1003478 | May 2000 | EP |
1017469 | Jul 2000 | EP |
1025923 | Aug 2000 | EP |
1068906 | Jan 2001 | EP |
1075875 | Feb 2001 | EP |
1092447 | Apr 2001 | EP |
1157689 | Nov 2001 | EP |
1211628 | Jun 2002 | EP |
1245244 | Oct 2002 | EP |
1312418 | May 2003 | EP |
1375385 | Jan 2004 | EP |
1521609 | Apr 2005 | EP |
1535643 | Jun 2005 | EP |
1595564 | Nov 2005 | EP |
1595822 | Nov 2005 | EP |
1726324 | Nov 2006 | EP |
1736193 | Dec 2006 | EP |
1795221 | Jun 2007 | EP |
1813548 | Aug 2007 | EP |
2135632 | Dec 2009 | EP |
2262348 | Nov 2006 | ES |
2505688 | Nov 1982 | FR |
2604363 | Apr 1988 | FR |
2673608 | Sep 1992 | FR |
2756502 | Jun 1998 | FR |
1524431 | Sep 1978 | GB |
2081396 | Feb 1982 | GB |
2101020 | Jan 1983 | GB |
2279273 | Jan 1995 | GB |
2291135 | Jan 1996 | GB |
2332372 | Jun 1999 | GB |
2333129 | Jul 1999 | GB |
2347870 | Sep 2000 | GB |
2355252 | Apr 2001 | GB |
2398253 | Aug 2004 | GB |
0700839.4 | Jul 2008 | GB |
S5684246 | Jul 1981 | JP |
H01288265 | Nov 1989 | JP |
H0228121 | Jan 1990 | JP |
H057246 | Feb 1993 | JP |
H0553470 | Mar 1993 | JP |
H06312019 | Nov 1994 | JP |
H07118164 | May 1995 | JP |
H07118166 | May 1995 | JP |
07323086 | Dec 1995 | JP |
H08277226 | Oct 1996 | JP |
H092442 | Jan 1997 | JP |
H0977073 | Mar 1997 | JP |
H09315953 | Dec 1997 | JP |
2001518428 | Oct 2001 | JP |
2001346878 | Dec 2001 | JP |
2002504411 | Feb 2002 | JP |
2002235940 | Aug 2002 | JP |
2003511212 | Mar 2003 | JP |
2003299717 | Oct 2003 | JP |
2004502502 | Jan 2004 | JP |
2004097617 | Apr 2004 | JP |
2005511210 | Apr 2005 | JP |
2005144459 | Jun 2005 | JP |
2007517529 | Jul 2007 | JP |
2007245144 | Sep 2007 | JP |
2007534379 | Nov 2007 | JP |
2008119489 | May 2008 | JP |
2008541808 | Nov 2008 | JP |
2010526620 | Aug 2010 | JP |
2010540371 | Dec 2010 | JP |
198100674 | Mar 1981 | WO |
198200785 | Mar 1982 | WO |
198300288 | Feb 1983 | WO |
198303054 | Sep 1983 | WO |
198605419 | Sep 1986 | WO |
198706137 | Oct 1987 | WO |
198803419 | May 1988 | WO |
198900889 | Feb 1989 | WO |
198900947 | Feb 1989 | WO |
198902279 | Mar 1989 | WO |
198903672 | May 1989 | WO |
198903673 | May 1989 | WO |
198905139 | Jun 1989 | WO |
199009780 | Sep 1990 | WO |
199009781 | Sep 1990 | WO |
1991014468 | Oct 1991 | WO |
199206704 | Apr 1992 | WO |
199217231 | Oct 1992 | WO |
199221332 | Dec 1992 | WO |
199222286 | Dec 1992 | WO |
1993013737 | Jul 1993 | WO |
199325321 | Dec 1993 | WO |
1993024164 | Dec 1993 | WO |
9407607 | Apr 1994 | WO |
199417822 | Aug 1994 | WO |
199425371 | Nov 1994 | WO |
199427653 | Dec 1994 | WO |
199503034 | Feb 1995 | WO |
1995032015 | Nov 1995 | WO |
199600050 | Jan 1996 | WO |
1996006011 | Feb 1996 | WO |
199606581 | Mar 1996 | WO |
199623522 | Aug 1996 | WO |
199701329 | Jan 1997 | WO |
199706813 | Feb 1997 | WO |
199706842 | Feb 1997 | WO |
199712683 | Apr 1997 | WO |
1997012687 | Apr 1997 | WO |
199720590 | Jun 1997 | WO |
199723208 | Jul 1997 | WO |
199727804 | Aug 1997 | WO |
199735562 | Oct 1997 | WO |
199741833 | Nov 1997 | WO |
1998012511 | Mar 1998 | WO |
199827959 | Jul 1998 | WO |
199831346 | Jul 1998 | WO |
199839043 | Sep 1998 | WO |
1999001227 | Jan 1999 | WO |
1999007340 | Feb 1999 | WO |
1999011563 | Mar 1999 | WO |
1999016530 | Apr 1999 | WO |
1999043571 | Sep 1999 | WO |
199962495 | Dec 1999 | WO |
199965464 | Dec 1999 | WO |
200001612 | Jan 2000 | WO |
200023037 | Apr 2000 | WO |
2000023065 | Apr 2000 | WO |
200027543 | May 2000 | WO |
200037336 | Jun 2000 | WO |
2000033965 | Jun 2000 | WO |
200049988 | Aug 2000 | WO |
200064779 | Nov 2000 | WO |
200113885 | Mar 2001 | WO |
200128489 | Apr 2001 | WO |
2001064182 | Sep 2001 | WO |
200187392 | Nov 2001 | WO |
2001085097 | Nov 2001 | WO |
200197888 | Dec 2001 | WO |
200198175 | Dec 2001 | WO |
200198176 | Dec 2001 | WO |
200204054 | Jan 2002 | WO |
200205879 | Jan 2002 | WO |
WO 0216046 | Feb 2002 | WO |
200217988 | Mar 2002 | WO |
200232899 | Apr 2002 | WO |
2002034411 | May 2002 | WO |
2002070141 | Sep 2002 | WO |
2002089887 | Nov 2002 | WO |
2003002045 | Jan 2003 | WO |
2003014832 | Feb 2003 | WO |
2003020253 | Mar 2003 | WO |
2003022332 | Mar 2003 | WO |
2003035030 | May 2003 | WO |
2003037159 | May 2003 | WO |
2003037259 | May 2003 | WO |
2003049786 | Jun 2003 | WO |
2003050031 | Jun 2003 | WO |
2003053350 | Jul 2003 | WO |
2003057593 | Jul 2003 | WO |
2003059547 | Jul 2003 | WO |
2003068299 | Aug 2003 | WO |
2003087097 | Oct 2003 | WO |
2003097139 | Nov 2003 | WO |
2004019985 | Mar 2004 | WO |
2004022052 | Mar 2004 | WO |
2004022132 | Mar 2004 | WO |
2004022244 | Mar 2004 | WO |
2004024157 | Mar 2004 | WO |
200433954 | Apr 2004 | WO |
2004062813 | Jul 2004 | WO |
2004078236 | Sep 2004 | WO |
2004089551 | Oct 2004 | WO |
2004091704 | Oct 2004 | WO |
2004098689 | Nov 2004 | WO |
2004098795 | Nov 2004 | WO |
2005000476 | Jan 2005 | WO |
2005004844 | Jan 2005 | WO |
2005014175 | Feb 2005 | WO |
2005020953 | Mar 2005 | WO |
2005030211 | Apr 2005 | WO |
2005055976 | Jun 2005 | WO |
2005077445 | Aug 2005 | WO |
2005079997 | Sep 2005 | WO |
2005080001 | Sep 2005 | WO |
2005080002 | Sep 2005 | WO |
2005087299 | Sep 2005 | WO |
2005107837 | Nov 2005 | WO |
2005109948 | Nov 2005 | WO |
2005112892 | Dec 2005 | WO |
2005112996 | Dec 2005 | WO |
2005113007 | Dec 2005 | WO |
2006011638 | Feb 2006 | WO |
2006018392 | Feb 2006 | WO |
2006027595 | Mar 2006 | WO |
2006037636 | Apr 2006 | WO |
2006037948 | Apr 2006 | WO |
2006042297 | Apr 2006 | WO |
2006045813 | May 2006 | WO |
2006110080 | Oct 2006 | WO |
2006125577 | Nov 2006 | WO |
2006126014 | Nov 2006 | WO |
2007011475 | Jan 2007 | WO |
2007022898 | Mar 2007 | WO |
2007049239 | May 2007 | WO |
2007060104 | May 2007 | WO |
2007060105 | May 2007 | WO |
2007060106 | May 2007 | WO |
2007060107 | May 2007 | WO |
2007060108 | May 2007 | WO |
2007062721 | Jun 2007 | WO |
2007090822 | Aug 2007 | WO |
2007101557 | Sep 2007 | WO |
2007128381 | Nov 2007 | WO |
2007134965 | Nov 2007 | WO |
2007134966 | Nov 2007 | WO |
2007134967 | Nov 2007 | WO |
2007134968 | Nov 2007 | WO |
2007141201 | Dec 2007 | WO |
2007141203 | Dec 2007 | WO |
2008023017 | Feb 2008 | WO |
2008047035 | Apr 2008 | WO |
2008077623 | Jul 2008 | WO |
2008124666 | Oct 2008 | WO |
2008138936 | Nov 2008 | WO |
2008146025 | Dec 2008 | WO |
2009006137 | Jan 2009 | WO |
2009047021 | Apr 2009 | WO |
2009047173 | Apr 2009 | WO |
2009050978 | Apr 2009 | WO |
2009090245 | Jul 2009 | WO |
2009103510 | Aug 2009 | WO |
2009115200 | Sep 2009 | WO |
2010005946 | Jan 2010 | WO |
2010006870 | Jan 2010 | WO |
2010094305 | Aug 2010 | WO |
2010094413 | Aug 2010 | WO |
2010112358 | Oct 2010 | WO |
2010133294 | Nov 2010 | WO |
2011006711 | Jan 2011 | WO |
2011064160 | Jun 2011 | WO |
2011064163 | Jun 2011 | WO |
2011064164 | Jun 2011 | WO |
2011131779 | Oct 2011 | WO |
2011154295 | Dec 2011 | WO |
2011160932 | Dec 2011 | WO |
2012130757 | Oct 2012 | WO |
2012159914 | Nov 2012 | WO |
2012160047 | Nov 2012 | WO |
2012160052 | Nov 2012 | WO |
2012161685 | Nov 2012 | WO |
2012162305 | Nov 2012 | WO |
2013110601 | Aug 2013 | WO |
2013152861 | Oct 2013 | WO |
2013152894 | Oct 2013 | WO |
2015018901 | Feb 2015 | WO |
2015018903 | Feb 2015 | WO |
2015018904 | Feb 2015 | WO |
2015169431 | Nov 2015 | WO |
2015169732 | Nov 2015 | WO |
199901520 | Dec 1999 | ZA |
Entry |
---|
Cras et al “Comparison of chemical cleaning methods of glass in preparation for silanization” Biosensors & Bioelectronics 14 (1999) 683-688. |
Hoffman et al “Mixed self-assembled monolayers (SAMs) consisting of mehyoxy-tri(ethylene glycol)-terminated and alkyl-terminated dimethylchlorosilanes control the non-specific adsorption of proteins at oxidic surfaces” J. of Colloid and Interface Science 295 (2006) 427-435. |
Husseini et al “Alkyl Monolayers on Silica Surfaces Prepared Using Neat, Heated Dimethylmonochlorosilanes with Low Vapor Pressures” Langmuir 2003, 19, 5169-5171. |
Elwenspoek et al, Mechanical Microsensors, Springer-Verlag Berlin Heidelberg (c) 2001 4 pages. |
Kutchoukov et al “Fabrication of nanofluidic devices using glass-to-glass anodic bonding” Sensors and Actuators A 114 (2004) p. 521-527. |
Mandel et al “Cytophobic surface modification of microfluidic arrays for in situ parallel peptide synthesis and cell adhesion assays” Biotechnol Prog. Author manuscript available in PMC Sep. 21, 2008 19 pgs. |
Wang et al “Self-Assembled Silane Monolayers: Fabrication with Nanoscale Uniformity”; Langmuir 2005, 21, 1848-1857. |
Ackermann et al.; Quantitative Online Detection of Low-Concentrated Drugs via a SERS Microfluidic System; ChemPhysChem; 2007; vol. 8; No. 18; pp. 2665-2670. |
Wang et al.; Self-Assembled Silane Monolayers: Fabrication with Nanoscale Uniformity; Langmuir; 2005; vol. 21; No. 5; pp. 1848-1857. |
Henkel et al.; Chip modules for generation and manipulation of fluid segments for micro serial flow processes; Chemical Engineering Journal; 2004; vol. 101; pp. 439-445. |
Han et al.; Surface activation of thin silicon oxides by wet cleaning and silanization; Thin Solid Films; 2006; vol. 510; No. 1-2; pp. 175-180. |
International Search Report, Form PCT/ISA/210, for corresponding PCT/EP2010/053668; dated Nov. 8, 2010. |
“Lung Cancer”. Merck Manual Home Edition, pp. 1-7. [Accessed at www.merck.com/mmhe/print/sec04/ch057/ch057a.html, on Jul. 28, 2010]. |
Abstract in English for DE19902844, 1999. |
Abstract in English for DE4117078, 1992. |
Abstract in English for EP0354507, 1990. |
Abstract in English for FR2756502, 1998. |
Abstract in English for JPS5684246, 1979. |
Abstract in English of DE10007591, 2000. |
Abstract in English of DE202006017793, 2007. |
Abstract in English of JPH07118164, 1995. |
Abstract in English of JPH07118166, 1995. |
Abstract in English of JPH08277226,1996. |
Abstract in English of JPH092442, 1997. |
Abstract in English of JPH09315953, 1997. |
Abstract in English of JPH0977073, 1997. |
Abstract in English of WO199706813, 1997. |
Abstract in English of WO199839043, 1998. |
Abstract in English of WO2002070141, 2002. |
Bocci et al., “Pulmonary catabolism of interferons: alveolar absorption of 125I-labeled human interferon alpha is accompanied by partial loss of biological activity”. Antiviral Research, vol. 4, 1984, pp. 211-220. |
China Suppliers, Shanghai Lite Chemical Technology Co., Ltd. Product details on polyvinylpyrrolidones. Obtained online by the USPTO examiner on Apr. 24, 2011. |
Diamond et al., “Substance P Fails to Mimic Vagally Mediated Nonadrenergic Bronchodilation”. Peptides, vol. 3, 1982, pp. 27-29. |
English Language Abstract of EP1068906, 2001. |
Fuchs et al., “Neopterin, biochemistry and clinical use as a marker for cellular immune reactions”. International Archives of Allergy and Immunology, vol. 101, No. 1, 1993, pp. 1-6, Abstract 1p. |
Ip et al., “Stability of Recombinant Consensus Interferon to Air-Jet and Ultrasonic Nebulization”. Journal of Pharmaceutical Sciences, vol. 84, No. 10, Oct. 1995, pp. 1210-1214. |
Jendle et al., “Intrapulmonary administration of insulin to healthy volunteers”. Journal of Internal Medicine, vol. 240, 1996, pp. 93-98. |
Lougheed et al., “Insulin Aggregation in Artificial Delivery Systems”. Diabetologia, vol. 19, 1980, pp. 1-9. |
Niven et al., “Some Factors Associated with the Ultrasonic Nebulization of Proteins”. Pharmaceutical Research, vol. 12, No. 1, 1995, pp. 53-59. |
Remington Pharmacy, Editor Alfonso R. Gennaro. 19th ed., Spanish Secondary Edition: Panamericana, Spain, 1995, Sciarra, J.J., “Aerosols”, pp. 2560-2582. The English translation is from the 1995 English Primary Edition, Sciarra, J.J., Chapter 95, R97-1185. |
Trasch et al., “Performance data of refloquant Glucose in the Evaluation of Reflotron”. Clinical Chemistry, vol. 30, 1984, p. 969 (abstract only). |
Wall et al., “High levels of exopeptidase activity are present in rat and canine bronchoalveolar lavage fluid”. International Journal of Pharmaceutics, vol. 97, Issue 1-3, pp. 171-181, 1993, Abstract pp. 1-2. |
Abstract in English of JPH057246, 1993. |
Abstract in English of JPH0553470, 1993. |
Chen, F-K et al., “A study of forming pressure in the tube-hydroforming process”. Journal of Materials Processing Technology, 192-193, 2007, p. 404-409. |
Abstract in English of FR2604363, Sep. 30, 1986. |
“Activate”. Collins English Dictionary, London: Collins, 2000, 2 pages. [Retrieved at http://search.credoreference.com/content/entry/hcengdict/activate/0 on Jun. 12, 2014]. |
Beasley R et al: “Preservatives in Nebulizer solutions: Risks without Benefit” Pharmacotherapy, Boston, US, Bd. 18, Nr. 1, Jan. 1998, pp. 130-139. |
Beasley R et al: “Preservatives in Nebulizer solutions: Risks without Benefit” Pharmacotherapy, Boston, US, Bd. 18, Nr. 1, Jan. 1998. |
JP2005144459—English language abstract only. |
Abstract in English for WO2009050978, 2009. |
Abstract in English for JP2002-235940, 2001. |
Myung-Suk Chun et al, “Fabrication and validation of a multi-channel type microfluidic chip for electronical streaming potential devices”, Lab on a Chip: miniaturisation for chemistry, physics, biology, materials science and bioengineering, 2006, vol. 6, No. 2, pp. 302-309. |
Number | Date | Country | |
---|---|---|---|
20120138713 A1 | Jun 2012 | US |