1. Field of the Invention
This invention relates in general to a process for coating reticulated foam, and more particularly but not by way of limitation, to a method for coating reticulated foam with antimicrobial agents that provides uniform coating throughout the reticulated foam and the product formed by the method.
2. Description of the Related Art
A wide variety of novel and/or established antimicrobial compounds combined with wound dressing can control microbial contamination and potentially lower the rate of infection. The coating uniformity is an essential key to the antimicrobial performance of the wound dressing. What is not known is any method of coating medical wound dressings or foams wherein the entire volume of the dressing is capable of uniform coating with a polymer coating system. This occurs for several reasons.
Particularly, certain foams are very thick, often in the range of about 1.25 inches. The thickness of these dressings limits the coating process, inasmuch as there is no way to insure a uniform coating throughout the entire structure such that the structure is capable of being severed omni-directionally while still having the desired anti-microbial agent exposed for use in a wound.
Certain coating methods exist, such as vapor deposition (both physical and chemical), electrostatic coating, spraying and sputter coating. However, these coating methods are costly, and are not adaptable to uniformly coating three-dimensional surfaces of certain dressings, such as reticulated foam. In addition, these methods have extensive environmental issues that concern users of the dressings in the medical industry.
Other methods of adding antimicrobials to the dressing, such as additives in the foaming process itself or the use of adjunctive therapies or combination products (e.g. on thin antimicrobial dressing attached to the foam) exist, but are difficult to use. Particularly these methods are known to mechanically impact the foam and to materially impact the permeability of the foam.
Because wound sizes and shapes have almost infinite variations, the wound dressing must be adaptable to accommodate the wound and provide appropriate anti-microbial properties to prevent further infection. Accordingly, there is a need to develop a process for uniformly coating the dressing or foam with anti-microbial agents sufficient to decontaminate the wound yet simple to use and cost-effective, such that the foam will be adapted for in situ adjustment to match the wound shape and dimension.
The present invention fulfills this and other needs through the development of a process for uniformly coating a foam or dressing and a foam or dressing formed by this process with an antimicrobial polymer. Such foam or dressing is particularly useful in negative pressure wound therapy.
A more complete understanding of the method and apparatus of the present invention may be obtained by reference to the following Detailed Description of the Invention, with like reference numerals denoting like elements, when taken in conjunction with the accompanying Drawings wherein:
The present invention provides a method for uniformly coating a wound dressing with antimicrobial polymers incorporating agents, such as Au, utilizing a novel process and a wound dressing formed under the process. The method of uniform coating enables a user of the dressing to sever the dressing in any direction and still have all exposed surfaces uniformly coated with the antimicrobial agent sufficient to decontaminate the wound.
A polyurethane foam is uniformly coated with a silver hydrogel polymer. The polymer coating itself contains PVP or Poly[vinlypyrrolidine], which is a water-soluble polymer with pyrroloidone side groups, typically used as a food additive, stabilizer, clarifying agent, tableting adjunct and dispersing agent. It is most commonly known as the polymer component of Betadine (a povidone-iodine formulation). In addition, the coating may contain Chitosan, which is a deacetylated derivative of chitin, a polysaccharide that is refined from shells of shrimps, crabs and other crustaceans. Chitosan has also been used in hemostatic dressings. The third optional component of the polymer is preferably Silver Sodium Aluminosilicate, which is silver salt powder with 20% active ionic silver by weight.
Referring first to
The foam is then placed in a convectional forced-air oven set to a predetermined temperature and time to completely dry the solution-coated foam, 114. Alternatively, to verify the dry condition of the foam, the weight of the foam may be checked again, 116. If light-sensitivity remains an issue, the foam can be packaged in a moisture vapor transmission rate (MVTR) pouch, which limits the exposure of the foam to light and to humidity, 118. The foam is now ready for use on such sites as partial thickness burns, traumatic wounds, surgical wounds, dehisced wounds, diabetic wounds, pressure ulcers, leg ulcers, flaps and grafts.
In one example, a foam made by the method described as achieved in-vitro efficacy on two common bacteria—staphylococcus aureus and pseudomonas aeruginosa, with a 20% silver salt load (4% silver by weight, though about 0.1% to about 6% has shown to be at least partially effective). The dressing maintains its effectiveness for 72 hours through a controlled and steady state release of ionic silver. Specifically, a diffusive gradient exists between the silver coating and the anionic rich outside environment that lead to disassociation and eventual transport of the silver ion. Using the above process, over a 6 log reduction or about 99.9999% of pathogenic bacteria have been eliminated between about 24 hours and about 72 hours.
The coating process can easily incorporate other additives, such as enzymatic debriders, anesthesia agents, growth factors and many other biopharmaceuticals. In addition, the coating can be formulated specific to coat thickness, although very thin coatings (about 2 to 10 micrometers) are preferable. The formulation can further be adapted to allow for large particle sizes and different release kinetics, such as concentration and rate and the duration of release.
The uniform and impregnated coating allows for delivery of silver ions both outside and within the foam. In this manner, not only is bacteria eliminated on the wound bed, but also within the dressing itself. This is particularly useful when using the dressing in combination with a negative pressure therapy. Also, odor reduction is an added benefit of this method.
Referring now to
The foam from the removal step 204 is subjected to a convection oven for drying, 212. During certain silver-solution coating experiments, when the temperature of the oven is set at about 90° C., 20 minutes has been found to be an effective drying time. However, it is preferable to dry the foam for about at least 6 minutes to minimize any breakdown of coating. The foam is next packaged in appropriate containers, such as the MVTR pouch or similar containers for shipment to the user, 214.
Referring now to
When used in combination with negative pressure therapeutic devices, such as that made by Kinetic Concepts, Inc., the dressing 300 is particularly effective.
Referring now to
The previous description is of preferred embodiments for implementing the invention, and the scope of the invention should not necessarily be limited by this description. The scope of the present invention is instead defined by the following claims.
The present application claims priority to U.S. Provisional Patent Application No. 60/591,014, filed Jul. 26, 2004, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60591014 | Jul 2004 | US |