1. Field of the Invention
The present invention relates to the completion of a wellbore. More particularly, the invention relates to methods for completing a hydrocarbon wellbore that involve heating of circulating fluid to increase formation fracture pressure in the surrounding formation during drilling, cementing and completion operations.
2. Description of the Related Art
Hydrocarbon wells are formed by drilling a borehole in the earth, and then lining that borehole with steel casing in order to form a wellbore. After a section of earth has been drilled, a string of casing is lowered into the bore and temporarily hung therein from the surface of the well. Using apparatus known in the art, the casing is cemented into the wellbore by circulating cement into the annular area defined between the outer wall of the casing and the borehole.
It is common to employ more than one string of casing in a wellbore. In this respect, a first string of casing is set in the wellbore when the well is drilled to a first designated depth. The first string of casing is hung from the surface, and then cement is circulated into the annulus behind the casing. The well is then drilled to a second designated depth, and a second string of casing, or liner, is run into the well. The second string is set at a depth such that the upper portion of the second string of casing overlaps the lower portion of the first string of casing. The second liner string is then fixed or “hung” off of the existing casing by the use of slips which utilize slip members and cones to wedgingly fix the new string of liner in the wellbore. The second casing string is then cemented in the well. This process is typically repeated with additional casing strings until the well has been drilled to total depth. In this manner, wells are typically formed with two or more strings of casing of an ever decreasing diameter.
It would be ideal to be able to drill a single, continuous bore into the earth that extends to a desired production zone without utilizing separate strings of casing. However, a variety of factors require that wellbores be formed in sequential stages. One such limiting factor is the need for weighted drilling fluid. Wells have historically been drilled by placing a column of weighted fluid, sometimes referred to as “drilling mud,” in the drill string. The drilling mud serves to overcome formation pore pressures encountered as the wellbore is formed through the earth formations. In this respect, fluid pressure in a wellbore is intentionally maintained at a level above the pore pressure of formations surrounding the wellbore. Pore pressure refers to the natural pressure of fluid within a formation. The hydrostatic fluid pressure of the drilling fluid must be kept below the fracture pressure of the formation to prevent the wellbore fluid from entering the formation. Exceeding fracture pressure can result in fracturing of the formation and loss of expensive drilling fluid into the formation. More importantly, lost circulation creates a risk to personnel on the rig floor, as the rig is now subject to a “kick” caused by formation pore pressures.
The drilling mud is circulated through the drill bit and up an annular area between the drill string and surrounding casing or formation. The circulation of fluids in this manner not only aids in the control of wellbore pressures, but also serves to cool and lubricate the drill bit and to circulate cuttings back up to the surface. However, the circulation of fluids also forms a hydrostatic head and a friction head in the annular region that combine to form an “equivalent circulation density,” or ECD. The use of drilling mud and the resulting ECD create an inherent limitation as to the depth at which any section of borehole may be drilled before it must be cased.
Conventionally, a section of wellbore is drilled to that depth where the combination of the hydrostatic pressure and friction head approaches the fracture pressure of the formation adjacent the bottom of the wellbore. At that point, casing is installed in the wellbore to isolate the formation from the increasing pressure before the wellbore can be drilled to a greater depth. In the past, the total well depth was relatively shallow and casing strings of a decreasing diameter were not a big concern. Presently, however, with extended reach drilling (ERD) wells, so many casing strings are necessary that the fluid path for hydrocarbons at a lower portion of the wellbore becomes very restricted. In other instances, deep wellbores are impossible due to the number of casing of strings necessary to avoid fracturing the formation and to complete the wellbore.
In
Attempts have been made to reduce the pressure of fluid in a circulating wellbore. However art approaches have been directed primarily towards reducing pressure at the bit to facilitate the movement of cuttings to the surface. In a prior art patent, a redirection apparatus is shown which vents fluid from an interior of a tubular to an exterior thereof. While this device stirs up and agitates wellbore fluid, it does not provide any meaningful lift to the fluid in order to reduce the pressure of fluid there below.
A similar issue may be confronted during a cementing operation. In this respect, the act of sequentially circulating various fluids through a liner and back up the annulus necessarily creates radial pressures on the surrounding borehole. The presence of a full annulus additionally creates additional hydrostatic pressure. Moreover, the circulation of such fluids creates a “friction head,” as described above. Various fluids may be circulated during a cementing operation, including mud, water and the cement itself. These factors also may limit the length of liner that can be cemented in one completion stage.
There is a need, therefore, for a method of completing a wellbore that reduces the number of casing strings (liners) needed. In addition, there is a need for a method of completing a wellbore that causes the formation to tolerate a higher equivalent circulation density (ECD) of the drilling fluid. Further, there is a need for a method of completing a wellbore that utilizes a fluid heating apparatus to heat fluids as they are circulated during drilling and, in addition, which adds energy to fluids in the annular region. There is yet a further need for a method to reduce or to prevent differential sticking of a work string in a wellbore as a result of fluid loss into the wellbore. Still further, there is a need for a tool that may be employed that inhibits formation fracturing or fluid loss during a cementing operation. Some of these objects and others are met by various embodiments of the methods of the present invention.
The present invention generally provides methods for forming a portion of a wellbore. In one embodiment, the method includes the steps of drilling a well from a first selected depth to a second selected depth to form a bore through a surrounding earth formation, disposing a fluid heating apparatus in the bore, heating fluid by moving the fluid through the fluid heating apparatus, and heating the surrounding earth formation by circulating the heated fluid adjacent the earth formation so as to increase the fracture resistance of the formation. Preferably, the fluid heating apparatus is a fluid flow restrictor.
In one aspect, the method further includes the steps of running a liner into the bore; and cementing the liner in place in the wellbore after the surrounding formation has been heated along a selected length. The liner is preferably run into the bore on a liner hanger assembly, and a fluid heating apparatus in the form of a fluid flow restrictor is disposed in a run-in assembly for the liner hanger assembly.
A novel run-in assembly for a liner hanger operation is provided herein. In one aspect, the run-in assembly includes a running tool releasably connectible to the liner hanger assembly, a retrievable seal mandrel, and an elongated inner pipe. The inner pipe is configured to reside within the liner string, thereby forming an annular area for the circulation of warmed fluids. A fluid heating apparatus is provided with the running tool assembly. In one aspect, the fluid heating apparatus is a restricted diameter portion of the inner pipe. The elongated inner pipe may comprise a pipe section within the seal mandrel, a cross-over port connected to the pipe at a lower end, and a stinger portion connected below the crossover port joint. A circulating bypass apparatus may be provided along the elongated pipe to permit fluids to selectively fluid by the seal mandrel. have a fluid fan outer stinger connected below the retrievable seal mandrel, an inner pipe within the outer stinger, and a circulating bypass sleeve or valve. In one aspect, the circulating bypass apparatus includes an upper port and a lower pipe opening, and is movable relative to the retrievable seal mandrel to permit the upper and lower ports to straddle the retrievable seal mandrel and to permit circulated fluids to bypass the retrievable seal mandrel during fluid circulation.
In another embodiment, a method for drilling a wellbore is provided. The steps include drilling a well to a first selected depth to form a bore through earth formations; fixing a string of casing in the bore to form a wellbore; determining formation fracture pressure of the earth formation at the bottom of the wellbore; calculating a density of drilling fluid to offset formation pore pressure at the bottom of the wellbore while drilling without exceeding the formation fracture pressure; and then increasing the calculated density in anticipation of increased formation fracture pressure when the drilling fluid is heated. The calculated density of drilling fluid may further be adjusted upwardly to take into account energy added to the fluid in the annular region to reduce the hydrostatic head. The method may additionally include the further steps of resuming drilling of the well to a second selected depth; circulating the drilling fluid at the increased density while resuming the drilling of the well; heating the drilling fluid while the drilling fluid is being circulated through the working string; and adding energy to the drilling fluid traveling in the annulus to reduce hydrostatic head in the wellbore.
Preferably, the step of resuming drilling of the well defines the steps running a working string into the wellbore, the working string having a bore therein, and a drill bit disposed at the end of the working string; and rotating the drill bit. In addition, the step of heating the drilling fluid and the step of adding energy to the drilling fluid are preferably each performed by actuating a downhole annular pump disposed along the working string.
In one arrangement, the downhole annular pump is mechanically coupled to a downhole turbine within the bore of the working string. The turbine converts the hydraulic energy into the mechanical energy that drives the annular pump. In addition, the turbine acts as a fluid flow restrictor that converts hydraulic energy into thermal energy. The thermal energy convectively transmits heat through the working string, through fluid in the annular region, and into the wellbore.
In another embodiment, the method for completing a wellbore includes the steps of forming a wellbore to a selected depth; disposing a fluid heating apparatus onto a working string, the working string having a bore therein; running the working string into the wellbore; circulating fluid down into the wellbore through the bore of the working string and through the fluid heating apparatus; circulating fluid back up the wellbore through an annulus formed between the working string and the surrounding wellbore. The fluid heating apparatus is preferably a fluid flow restrictor that heats the fluid through friction; however, other heating devices such as a dedicated heating coil may be employed. In the former arrangement, the fluid heating apparatus itself adds energy to the circulated fluids in the annulus via a downhole annular pump so as to reduce the hydrostatic head acting in the annular region of the wellbore during drilling. Preferably, the annular pump is actuated by fluid flowing through the flow restrictor along the working string. However, energy may alternatively be added by a separate tool, such as a downhole motor. The downhole motor may either be connected to the downhole annular pump to assist in driving the pump, or may operate independently from the downhole annular pump.
The circulating fluid may be drilling fluid (such as, but not limited to, weighted mud), cement, or other fluid.
In another embodiment, the method for completing a wellbore includes the steps of running a working string into a bore in the earth, the working string having a bore therein, and a drill bit disposed proximate an end of the working string; rotating the working string to drill through an earth formation; circulating a drilling fluid while rotating the drill bit, the fluid being circulated in a first direction through the bore of the working string and the drill bit, and in a second direction through an annular region formed between the working string and the surrounding earth formation; heating the drilling fluid through a fluid flow restrictor while the drilling fluid is being circulated through the working string; and adding energy to the drilling fluid traveling in the annulus to reduce the hydrostatic head in the wellbore. Preferably, the steps of heating the drilling fluid and adding energy to the drilling fluid are again each performed by circulating fluid through a downhole turbine which drives an annular pump disposed along the working string.
In one aspect of the inventions, an ECD (equivalent circulation density) reduction tool provides a means for drilling extended reach deep (ERD) wells with heavyweight drilling fluids by reducing the effect of the hydrostatic head on bottomhole pressure so that circulating density of the fluid is close to its actual density. With an ECD reduction tool located in the well, the hydrostatic head is substantially reduced, which in turn reduces the risk of fracturing a formation. At the same time, the ECD reduction tool increases the temperature of the fluid before it contacts the surrounding earth formation at the bottom of the wellbore. The increased temperature serves to increase formation fracture resistance. This, in turn, allows the formation to tolerate a greater ECD so that more earth can be penetrated during drilling between casing stages. The number of casing sizes required to complete the well is thereby reduced. This is particularly helpful in those circumstances where casing shoe depth is limited by a narrow margin between pore pressure and fracture pressure of the formation.
In another aspect of the inventions, an ECD reduction tool is used to overcome differential sticking. Differential sticking of the working string in a wellbore is a problem sometimes associated with deep wells. If wellbore fluid enters an adjacent formation, the work string can be pulled in the direction of the exiting fluid due to a pressure differential between pore and wellbore pressure, and become stuck.
So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
In
In
In
In
In
In
In
In
In
In
The present invention relates to various methods for completing a wellbore. The various methods may first be understood in the context of the exemplary wellbore 105 found in
At a lower end of the central wellbore, the casing 110 terminates. The horizontal portion of the wellbore 105 extends below the central portion. The horizontal bore opens into an “open hole” portion. This means that the lower portion of the illustrative wellbore 105 is uncased.
A working string 120 is placed within the wellbore 105. The working string 120 resides generally coaxially in the wellbore 105, and is made up of a plurality of tubulars threaded together in series. A drill bit 125 is disposed at a lower end of the working string 120. The bit 125 rotates at the end of the string 120 to form the borehole. Rotation may be provided at the surface of the well by turning a Kelly using a motor on the rig platform (not shown), or by a mud motor (not shown) located in the string 120 proximate the drill bit 125.
In
Drilling fluid, or “mud,” is circulated in the wellbore 105. First, drilling fluid is circulated down the working string 120, and exits the drill bit 125. The fluid typically provides lubrication for the rotating bit, as well as a means for transporting cuttings to the surface of the well 105. In addition, and as stated herein, the drilling fluid provides a pressure against the sides of the wellbore 105 to keep the well in control and prevent wellbore fluids from entering the wellbore 105 before the well is completed.
It can be seen from
The operator is informed with the depth of the wellbore which provides a hydrostatic pressure on the bottom formation when the wellbore 105 is filled with drilling fluid. The operator is able to factor frictional forces induced by fluid circulation up the annular region 150 into this value. These frictional forces are, again, due to the “friction head”. With this data, the operator is able to calculate an appropriate weighting of drilling fluid to offset formation pore pressure at the bottom of the wellbore without exceeding the formation fracture pressure. The operator may then resume drilling.
It has been observed that the temperature of circulating fluid has a thermal effect on wellbore stresses. More specifically, an increased temperature of circulating fluids downhole impacts fracture pressure along the exposed formation. Increasing the temperature of circulating fluid can increase the fracture pressure of the formation. This makes it possible to drill deeper wellbore portions and advance casing shoe depth, or to use higher density fluid with less risk of fracturing the formation when the drilling fluid is heated. Greater resistance of formation to fracturing also permits raising the column of cement slurry in the annular region 150 between the casing and wellbore.
Once this adjusted fluid weight is determined, the operator resumes drilling of the well to a second selected depth. During this time, fluid is circulated in the working string 120 and through the drill bit 125 at the appropriate weight in accordance with arrows 140. In accordance with one aspect of the present invention, the drilling fluid may be heated by flowing it through a fluid heating apparatus. The fluid heating apparatus is any tool that converts hydraulic energy to thermal energy. An example is a fluid flow restrictor disposed along the working string. As noted, the fluid heating apparatus serves to increase the fracture resistance of the formation. In addition, energy may be added to the drilling fluid traveling in the annulus 150 via arrows 145 to further reduce the hydrostatic head of circulated fluid in the wellbore 105. This allows the operator to drill a greater length of hole without exceeding the formation fracture resistance.
Preferably, the step of resuming drilling of the well defines the steps running a working string 120 into the wellbore 105. The working string 120 has a bore therein for receiving the circulated fluids. In addition, the drill bit 125 is rotated in order to “make hole.” Preferably, the step of heating the drilling fluid and the step of adding energy to the drilling fluid are preferably each performed by actuating a downhole device disposed along the working string. An example of such a device is a downhole annular pump driven by a turbine in the bore of the working string 120.
Disposed in the working string 120 and shown schematically in
The shaft of the turbine 200 is mechanically connected to and actuates a shaft (not shown) in the pump 300. Fluid flowing upwards in the annulus 150 is directed into an area of the pump (arrows 305) where it flows between a rotating rotor and a stationary stator. Thus, the purpose of the pump 300 is to act upon fluid circulating back up the wellbore 105 in the annulus 150. This acts to provide energy or “lift” to the fluid. This added energy reduces the hydrostatic pressure of the fluid in the wellbore 105 below the pump 300 as energy is added to the upwardly moving fluid by the pump 300.
Turbines are known in the art and utilize a flow of fluid to produce a rotational movement. There are other devices that utilize a flow to create rotational movement, such as progressive cavity motors. Progressive cavity motors use concepts and mechanisms taught by Moineau in U.S. Pat. No. 1,892,217, which is incorporated by reference herein in its entirety. A typical motor of this type has two helical gear members wherein an inner gear member rotates within an outer gear member. Typically, the outer gear member has one helical thread more than the inner gear member. During the rotation of the inner gear member, fluid is moved in the direction of travel of the threads. In another variation of motor, fluid entering the motor is directed via a jet onto bucket-shaped members formed on a rotor. Such a motor is described in International Patent Application No. PCT/GB99/02450 and that publication is incorporated herein in its entirety. Regardless of the turbine or motor design, the purpose is to provide rotational force to the pump so that the pump might affect fluid traveling upwards in the annulus 150.
The turbine of
A shaft 285 of the turbine 200 is supported in the housing 210 by two sets of bearings 203, 204 that keep the shaft 285 centralized in the housing 210 and reduce friction between the spinning shaft 285 and the housing 210 therearound. At a location near the lower bearings 204, the fluid is directed inwards to the central bore of the shaft 285 with inwardly directed channels 206 radially spaced around the shaft 285. At a lower end, the shaft 285 of the turbine 200 is mechanically connected to a pump shaft 310 coaxially located therebelow. The connection in one embodiment is a hexagonal, spline-like connection 286 rotationally fixing the shafts 285, 310, but permitting some axial movement within the connection. The motor housing 210 is preferably provided with female threads at a lower end, and threadingly attached to an upper end of a pump housing 320 having male threads formed thereupon.
While the turbine 200 in the embodiment shown is a separate component with a housing threaded to the working string 120, it will be understood that by miniaturizing the parts of the turbine 200, it could be fully disposed within the working string 120 and removable and interchangeable without pulling the entire working string 120 from the wellbore 105. For example, in one embodiment, the motor 200 is run separately into the working string 120 on wire line where it latches at a predetermined location into a preformed seat in the tubular working string 120 and into contact with a pump disposed therebelow in the working string 120.
Below the impeller section 325, an annular path 350 is formed within the pump 300 for fluid traveling upwards towards the surface of the well. Referring to both
A casing program for the GOM well called for seven casing sizes, excluding the surface casing, starting with 20″ OD casing and ending with 5″ OD casing (Table 1). The 9⅝″ OD casing shoe was set at 18,171-ft MD with 15.7-ppg leakoff test. Friction head at 9⅝″ casing shoe was calculated as 326-psi, which gave an ECD of 15.55-ppg. Thus with 15.5-ppg ECD the margin for kickoff was 0.15-ppg.
From the above information, formation fracture pressure (Pf9.625), hydrostatic head of 15.2-ppg drilling fluid (Ph9.625) and circulating fluid pressure (PECD9.625) at 9⅝″ casing shoe can be calculated as:
Pf9.625=0.052×15.7×17,696=14,447 psi
Ph9.625=0.052×15.2×17,696=13,987 psi
PECD9.625=0.052×15.55×17,696=14,309 psi.
Average friction head per foot of well depth=326/17,696=1.842×10−2 psi/ft.
Theoretically the ECD reduction tool located in the drill string above the 9⅝″ casing shoe could provide up to 326-psi pressure boost in the annulus to overcome the effect of hydrostatic head on wellbore pressure. However, for an ECD motor and pump to operate effectively, the drilling fluid flow rate should reach 40 to 50 percent of full circulation rate before a positive effect on wellbore pressure is realized. Hence, the efficiency of the ECD reduction tool is assumed to be 50%, which means that the circulating pressure at 9⅝″ casing shoe with an ECD reduction tool in the drill string would be 14,146-psi (14,309−326/2).
Actual ECD=14,146/(0.052×17,696)=15.38 ppg.
The safety margin for formation fracturing has improved to 0.32-ppg from 0.15-ppg. Assuming the fracture pressure follows the same gradient (15.7-ppg) all the way up to 28,000-ft TVD, the fracture pressure at TVD is:
PfTVD=0.052×15.7×28,000=22,859-psi.
Circulating pressure at 28,000 TVD=0.052×15.38×28,000+1.842×10−2×(28000−17696)=22,582 psi
The above calculations are summarized in Table 2 and
This analysis shows that the entire segment of the well below 9⅝″ casing could be drilled with 15.2-ppg drilling fluid if there was an ECD reduction tool in the drill string. A 7″ casing could be set at TVD eliminating the need for 5″ casing. Notice from
The device 400 of
In the embodiment of
In use, the jet device 400 is run into a wellbore disposed in a working string. Thereafter, as fluid is circulated down the working string and upwards in the annulus 150, a back pressure caused by the restriction causes a portion of the downwardly flowing fluid to be directed into channels and through nozzles 435. As a low-pressure area is created adjacent each nozzle 435, energy is added to fluid in the annulus 150 so that pressure of fluid in the annulus 150 below the assembly 400 is reduced.
From equation 3 it is evident that the Reynolds number is inversely proportional to the fluid viscosity. Everything being equal, higher viscosity gives lower a Reynolds number and corresponding higher coefficient of drag. Higher coefficient of drag causes particles to accelerate faster in the fluid stream until particles attain the same velocity as that of the fluid [(uf−up)=0]. Clearly fluid with higher viscosity has a greater capacity to transport cuttings. However, in drilling operations, using viscous fluid causes friction head to be higher thereby increasing ECD. Thus without an ECD reduction tool, using a high viscosity drilling fluid may not be possible under some conditions.
Using a downhole annular pump such as the ECD reduction tool 300, 400, additional methods for completing a wellbore may be provided. In an alternate embodiment, the method includes the step of forming a wellbore to a selected depth. A downhole annular pump is disposed onto a working string, with the working string having a bore therein. The working string is run into the wellbore with a downhole annular pump. From there, fluid is circulated down into the wellbore through the bore of the working string and through the downhole annular pump. Fluid is circulated back up the wellbore through the annulus formed between the working string and the surrounding formation. The downhole annular pump adds energy to the return circulated fluids so as to reduce the hydrostatic head acting in the annular region of the wellbore during drilling. Preferably, the downhole annular pump is actuated by fluid flowing through the working string, i.e., is fluid actuated.
The density of the drilling fluid can be further increased by varying other drilling parameters. For example, the calculated fluid density may be increased in anticipation of decreasing the outer diameter of at least a portion of the working string. Alternatively, the calculated fluid density may be increased in anticipation of decreasing the circulation velocity of the drilling fluid.
The circulating fluid is preferably a drilling fluid; however, the methods claimed herein are not limited to any type of fluid, and may include weighted mud, cement, or other fluid. Similarly for increasing temperature of wellbore fluid, the ECD reduction tool comprising of a downhole turbine and pump assembly described above is not the only option. Heat can also be added to circulated weilbore fluid through other means such as an electric heating element which may be powered by the downhole turbine, a downhole electric motor, or a fluid restrictor.
In connection with a liner hanging and cementing operation, a novel fluid flow restrictor is provided. The fluid flow restrictor is part of a run-in assembly for a liner hanger assembly. More specifically, the fluid flow restrictor is in the form of a constricted flow path through a run-in assembly that serves to heat the fluid.
Each of
It is noted that
Turning now to
As noted, various sub-tools are disposed along the length of the run-in assembly 500. These include an elongated upper support pipe 508, a shear bonnet 506, a packer actuator 520, the running tool 510, and a retrievable seal mandrel 530. These tools are common to many run-in assemblies, and their operations are well-known to those of ordinary skill in the art. It should be noted here that the seal mandrel 530 has a seal member 532 there around for sealing the outer surface of the mandrel 530 with the surrounding liner string 110.
Turning then to
The run-in assembly 500 has other features that are not known in other liner hanger operations. The run-in assembly 500 includes an elongated inner pipe 550. An inner seal 534 provides to provide an annular seal between the inner diameter of the mandrel 530 and the outer diameter of the inner pipe 550. The inner pipe 550 is preferably a string of 2⅞″ outer diameter pipe joints, though other geometries may be employed. The inner pipe connects to a ported cross-over joint 582. The cross-over joint 582, in turn, is connected to an elongated stinger 580. In one aspect, the stinger 580 is a 100 mm outer diameter slick stinger that extends within the liner 110. The stinger 580 is received within a stinger pack-off 680 appropriately placed within the liner string 110. An annular run-in area 585 is thus formed between the stinger 580 and the surrounding liner 110.
Referring again to the seal mandrel 530, the seal mandrel 530 includes a circulating bypass sleeve 540 having an outer sealing member 532 at the top. The bypass sleeve 540 has upper ports 546 and a lower port 544. In the embodiment of
In
In operation, the desired number of pipe joints making up the liner 110 is run into the wellbore 105. The liner 110 is then hung in the rotary equipment of the drilling rig (not shown). Next, the desired number of pipe joints making up the inner pipe 550 are made up and run into the liner joints 110. Then, the liner hanger assembly 600 and is made up to the inner pipe 550 and the liner 110. The run-in assembly 500 and connected liner hanger assembly 600 and liner 110 are then run into the wellbore 105 to the desired depth.
In
After the liner hanger 630 is set, the run-in assembly 500 is released. The operator picks up the inner pipe 550 until the collar locator 570 latches into a matching profile sub 670 in the liner hanger assembly 600. Preferably, the profile sub 670 is below the liner hanger 630. In
As described above, circulation is initiated in the inner pipe 550. The ball 543 remains seated on the landing seat 682. During circulation down the inner pipe 550, fluids encounter a reduced inner diameter portion of the pipe 550. The reduced inner diameter portion is seen at 550′ in
After exiting the inner pipe 550/580, the fluids travel along the outside of the stinger 580. More specifically, fluids move up the annular region 585 inside the liner 110. Contact between the warmed fluids and the liner 110 creates thermal warming of the surrounding formation along a desired depth. This heat convection, in turn, favorably increases the fracture gradient of the formation 50.
En route to the surface along the annular region 585, the fluids are blocked by the seal member 532 of the mandrel 530. Fluid is thus forced through the lower opening 544 of the bypass sleeve 540 and into the annular region between the inner pipe 550 and the bypass sleeve 540. Fluid flows upwardly through the bypass sleeve 540 and then exits through the upper 546 ports. From there fluid flows to the surface.
It is noted that any type of bypass arrangement for bypassing the seal mandrel 530 may be employed. For example, upper and lower valves may be utilized.
In one aspect, fluid is circulated for about 6 to 12 hours. The length of the liner 110 along which circulation is provided is a matter of engineer's choice. As warmed fluid travels in the annular region 585 adjacent the liner 110 (and, therefore, the surrounding earth formation), the formation is warmed. After a desired time of fluid circulation, circulation is stopped. The inner pipe 550 is slowly lowered back down until the locator collar 570 unlatches from the profile sub 670. The circulating bypass ports 546, 544 of the sleeve 540 are again both below the seal mandrel 530. The shear bonnet 506 is above the polished bore receptacle 610. Pressure is increased in the inner pipe 550 until the ball is blown out of the landing collar 682.
Where drilling mud is used as the circulating fluid, it may be necessary to break circulation. In this respect, the gel strength of the mud may be such that the fluid temporarily sets. Pressure must then be applied through the inner pipe 550 to induce recirculation. The drilling mud is displaced up the liner annulus 615. It is noted here that additional thermal effects are now provided through conduction and convection.
In
The next step is shown in
As can be seen, in the arrangement of
It should be added that for purposes of the present disclosure, the term “liner” may include any form of pipe, including surface casing. In addition, the methods of the present invention for heating fluid in preparation for a liner cement operation are not limited to use of the above described run-in assembly of
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/156,722, filed May 28, 2002, now U.S. Pat. No. 6,837,313 which is incorporated by reference herein in its entirety. That application is entitled “Apparatus and Method to Reduce Fluid Pressure in a Wellbore.” That application, in turn, was a continuation-in-part of U.S. patent application Ser. No. 09/914,338, filed Jan. 8, 2002. That application has since matured into U.S. Pat. No. 6,719,071, and is likewise incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1892217 | Moineau | Dec 1932 | A |
2050458 | Ovestrud et al. | Aug 1936 | A |
2946565 | Williams | Jul 1960 | A |
3802916 | Jackson | Apr 1974 | A |
3964547 | Hujsak et al. | Jun 1976 | A |
4008856 | Sears | Feb 1977 | A |
4049066 | Richey | Sep 1977 | A |
4063602 | Howell et al. | Dec 1977 | A |
4078610 | Arnold | Mar 1978 | A |
4085803 | Butler | Apr 1978 | A |
4223747 | Marais | Sep 1980 | A |
4291772 | Beynet | Sep 1981 | A |
4430892 | Owings | Feb 1984 | A |
4453319 | Morris | Jun 1984 | A |
4534426 | Hooper | Aug 1985 | A |
4545442 | Warner et al. | Oct 1985 | A |
4583603 | Dorleans et al. | Apr 1986 | A |
4630691 | Hooper | Dec 1986 | A |
4640352 | Vanmeurs et al. | Feb 1987 | A |
4640359 | Livesey et al. | Feb 1987 | A |
4641710 | Klinger | Feb 1987 | A |
4651825 | Wilson | Mar 1987 | A |
4662437 | Renfro | May 1987 | A |
4744426 | Reed | May 1988 | A |
4813495 | Leach | Mar 1989 | A |
4886118 | Van Meurs et al. | Dec 1989 | A |
4942929 | Malachosky et al. | Jul 1990 | A |
5025862 | Showalter | Jun 1991 | A |
5027721 | Anderson | Jul 1991 | A |
5098481 | Monlux | Mar 1992 | A |
5111756 | Reed | May 1992 | A |
5120935 | Nenniger | Jun 1992 | A |
5247994 | Nenniger | Sep 1993 | A |
5282263 | Nenniger | Jan 1994 | A |
5339898 | Yu et al. | Aug 1994 | A |
5339899 | Ravi et al. | Aug 1994 | A |
5355967 | Mueller et al. | Oct 1994 | A |
5570749 | Reed | Nov 1996 | A |
5651420 | Tibbitts et al. | Jul 1997 | A |
5720356 | Gardes | Feb 1998 | A |
6006837 | Breit | Dec 1999 | A |
6012526 | Jennings et al. | Jan 2000 | A |
6065550 | Gardes | May 2000 | A |
6119779 | Gipson et al. | Sep 2000 | A |
6220087 | Hache et al. | Apr 2001 | B1 |
6257333 | Mann et al. | Jul 2001 | B1 |
6419018 | Naquin et al. | Jul 2002 | B1 |
6527062 | Elkins et al. | Mar 2003 | B2 |
6550551 | Brunnert et al. | Apr 2003 | B2 |
6554076 | Guillory et al. | Apr 2003 | B2 |
6564874 | Narvaez | May 2003 | B2 |
6648081 | Fincher et al. | Nov 2003 | B2 |
6662884 | Hemphill | Dec 2003 | B2 |
6688394 | Ayling | Feb 2004 | B1 |
6708762 | Haugen et al. | Mar 2004 | B2 |
6719071 | Moyes | Apr 2004 | B1 |
6732804 | Hosie et al. | May 2004 | B2 |
6745855 | Gardes | Jun 2004 | B2 |
6938707 | Schmidt et al. | Sep 2005 | B2 |
20040060737 | deBoer | Apr 2004 | A1 |
20040069501 | Haugen et al. | Apr 2004 | A1 |
20040112595 | Bostick, III et al. | Jun 2004 | A1 |
20040118572 | Whanger et al. | Jun 2004 | A1 |
20040118614 | Galloway et al. | Jun 2004 | A1 |
20040124010 | Galloway et al. | Jul 2004 | A1 |
20040129424 | Hosie et al. | Jul 2004 | A1 |
20050045337 | Bansal et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
2162881 | Feb 1986 | GB |
1276799 | Dec 1986 | SU |
1474252 | Apr 1989 | SU |
1543040 | Feb 1990 | SU |
1585493 | Aug 1990 | SU |
WO 0004269 | Jan 2000 | WO |
WO 0008293 | Feb 2000 | WO |
WO 0050731 | Aug 2000 | WO |
WO 0214649 | Feb 2002 | WO |
WO 03023182 | Mar 2003 | WO |
WO 03025336 | Mar 2003 | WO |
WO 03100208 | Dec 2003 | WO |
WO 2005075790 | Aug 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050045337 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10156722 | May 2002 | US |
Child | 10911223 | US | |
Parent | 09914338 | Jan 2002 | US |
Child | 10156722 | US |