1. Field of the Invention
The invention relates to an improved method of extracting instantaneous frequency information from a received signal. More specifically, the invention relates to a method and system for computing the phase derivative, which is proportional to the signal instantaneous frequency, from the in-phase and quadrature components of an input signal without the need for the interim step of phase unwrapping. The invention can also be used to compute differential phase between two signals across two channels.
2. Description of Related Art
The process of extracting frequency information from a signal is well-documented. Methods exist for accomplishing the frequency extraction using analog or digital processing or a combination of both, and the different methods provide varying levels of fidelity in terms of resolution in time, frequency and spectral power. In the fields of communications and military signal processing, there is a need for high fidelity measurements of signal frequency.
In the analog realm, an approach to deriving frequency information is with a superheterodyne receiver. In the superheterodyne receiver, a local oscillator (LO) is used to convert an incoming radiofrequency (RF) signal to a fixed intermediate frequency (IF) by the heterodyning (mixing) process. A single circuit tuned to the IF can then filter, amplify and otherwise process the signal. To sample frequency data, the LO is swept across the frequency range of interest, and the resulting amplitude at the output of the IF circuit can be sampled, for instance, to provide amplitude versus frequency. This process provides a spectral profile of the signal.
Other heterodyne techniques may include additional processing of the analog IF signal in order to produce in-phase and quadrature (I and Q) signal components. The I and Q components make it convenient to derive the instantaneous signal envelope and phase. The derivative of phase with respect to time provides a measure of frequency.
A typical implementation of an instantaneous frequency measurement receiver utilizes a crystal video receiver with the addition of a frequency sensing method. The frequency sensing may be accomplished by dividing the signal into two paths with different relative delays, then comparing the phase from each path. The phase difference is proportional to the carrier frequency.
A typical implementation for digital processing is shown in
The CORDIC method is a well documented and well utilized digital signal processing technique in the field of communications and RF signal processing. The use of the CORDIC routine for fast digital trigonometric computations is known from the article “The CORDIC Trigonometric Computing Technique,” published in the IRE Transactions on Electronic Computers, September 1959 by J. E. Voider. The computations are effected via simple signal processing operations such as binary shifts, additions, subtractions and by calling constants from look-up tables. The CORDIC thus has a very simple and efficient circuit structure which in an integrated form requires comparatively little processing resources. In one mode of operation, the CORDIC operates in the so-called rotation mode in which mode a Cartesian (rectangular) coordinate representation is converted into a polar coordinate signal representation.
Examples of the utilization of the CORDIC routine are shown in literature. In Gerardus U.S. Pat. No. 5,230,011, the CORDIC is applied to achieve phase output. In Sullivan U.S. Pat. No. 7,020,190, the CORDIC is used as a means of accomplishing frequency translation, though direct computation of frequency is not shown.
The frequency computation process depicted in
As another example, the phase for a constant frequency signal is shown in
Phase unwrapping requires additional logic in a demodulator design and is fairly straightforward for signals that are highly over sampled (fs>>2*BW, sample frequency is much greater than two times the signal bandwidth) and with a high signal to noise ratio (SNR). However, for near critically sampled signals (fs≈2*BW) with increased noise levels (lower SNR), the process can be prone to errors.
It is the object of this invention to provide a novel method and apparatus for computing the phase derivative and also the frequency of a signal from In-Phase (I) and Quadrature (Q) components of the signal. The resulting method computes frequency from I/Q data without the need for an interim step of phase unwrapping. The method is intended for use in either single channel systems performing digital frequency demodulation or in direction-finding systems computing differential phase across two channels.
The present invention will now be described. The present invention provides a novel method for computing frequency directly from phase samples without the need for an interim step of phase unwrapping.
Let two complex vectors ŜN 500 and ŜN-1 510 represent consecutive I/Q samples, as shown in
The product of the first vector with the conjugate of the second vector yields
The exponent argument θN−θN-1 is the phase difference Δθ between the consecutive samples. To compute it, the consecutive samples are expressed in rectangular form as
Ŝ
N=(IN+j·QN) E-4
and
Ŝ*
N-1=(IN-1−j·QN-1) E-5
and multiplied to yield
Ŝ
N
·Ŝ*
N-1=(IN+j·QN)·(IN-1−j·QN-1) E-6
Expanding Equation E-6 yields
Ŝ
N
·Ŝ*
N-1=(IN·IN-1+QN·QN-1)+j(IN-1·QN−IN·QN-1) E-7
The corresponding differential phase between samples can be computed from Equation E-7 employing the arc tangent function:
The expression for differential phase given in Equation E-8 can be implemented using a CORDIC algorithm. The CORDIC algorithm is a commonly used digital signal processing technique used to implement several functions, including rectangular to polar conversion. The CORDIC therefore serves as a means of computing the phase angle of the equivalent polar coordinate representation of the rectangular coordinates given inputs that represent the abscissa 530 rectangular coordinate and the ordinate 520 rectangular coordinate. The present invention relates to modifying the inputs applied so that a means of computing the phase angle from rectangular coordinates yields the phase derivative rather than the phase. This modification of inputs when applied to, for example, a CORDIC routine results in the computation of the differential phase Δθ between adjacent samples.
An apparatus devised with logic circuitry to compute the differential phase between adjacent I/Q samples is shown in
An apparatus for computing the signal frequency directly without the interim step of phase unwrapping is also shown in
The device shown in
The output of delay registers 632 and 633 are combined by adder 655. The output of delay register 635 is inverted by inverter 640 and combined with the output of delay register 634 by adder 650. The combined outputs of adders 650 and 655 are the modified inputs to the CORDIC 660. These modified inputs are what produce the instantaneous phase derivative 690 at the phase output of the CORDIC 660. Frequency is easily computed from the phase derivative by scaling the phase derivative by a scale factor proportional to the sample rate of the input signal.
While the CORDIC has been shown here as a preferred implementation for computing the phase angle of the equivalent polar coordinate representation of the rectangular coordinates given inputs that represent the abscissa 530 rectangular coordinate and the ordinate 520 rectangular coordinate, it should be apparent to those skilled in the art that a number of means could be applied to compute this phase angle, including the use of a look-up table or some other form of arctangent calculation.
In
Multiplier 620 multiplies the channel one I 602 data with the channel two I data 601 and passes the result to delay register 632. Multiplier 621 multiplies the channel one Q 607 data with the channel two Q 606 data and passes the result to delay register 633. Multiplier 622 multiplies the channel one I 602 data with the channel two Q 606 data and passes the result to delay register 634. Multiplier 623 multiplies the channel two I 601 data with the channel one Q 607 data and passes the result to delay register 635.
The output of delay registers 632 and 633 are combined by adder 655. The output of delay register 635 is inverted by inverter 640 and combined with the output of delay register 634 by adder 650. The combined outputs of adders 650 and 655 are the modified inputs to the CORDIC 660. These modified inputs are what produce the differential phase 690 between the two channels at the phase output of the CORDIC 660.
It should be understood that the description of the present invention is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details may be varied substantially without departing from the spirit of the invention, and the exclusive use of all modifications which are within the scope of the appended claims is reserved.