1. Field of the Invention
This invention generally relates to a method for connecting a catheter balloon with a catheter shaft of a balloon catheter.
2. Background Information
In a known method this connection is carried out by local welding, for example by means of laser welding. This local welding requires locating the light beam on the connection site. In order to do so, for carrying out the known method the machine has to be adjusted exactly or the welding site has to be positioned exactly, respectively. However, this adjustment is very complicated, prone to errors and often requires manual correction of the apparatus. In addition to that, laser welding involves the problem that the total technical effort is very high and that examinations carried out in the context of the invention have shown that poor uniformity of the weld is often the result. In addition to that, in this method the material must be adapted to the radiation source.
In view of the above, it will be apparent to those skilled in the art from this disclosure that there exists a need for an improved method for connecting a catheter balloon with a catheter shaft of a balloon catheter. This invention addresses this need in the art as well as other needs, which will become apparent to those skilled in the art from this disclosure.
It is thus the object of the present invention to provide a method for connecting a catheter balloon with a catheter shaft of a balloon catheter the technical effort of which is lower and the welding results of which are improved compared to prior art.
The foregoing object can basically be attained by performing a method comprising the following steps: arranging a catheter balloon on a catheter shaft; attaching a pre-fixation for temporary fastening of the balloon to a desired fixation site of the catheter shaft; arranging a welding energy absorbing device in the area of the fixation site of the catheter balloon on the catheter shaft; irradiating the welding energy absorbing device with radiation energy; and removing the pre-fixation and the welding energy absorbing device after welding the balloon with the catheter shaft.
One advantage of the method according to the invention is that any desired materials can be used for the catheter balloon and the catheter shaft or catheter tube, respectively, since an adaptation to the radiation source to be used can be carried out by the welding energy absorbing device. During assembly the welding energy absorbing device defines the exact position at which welding is carried out afterwards or energy is injected, respectively. Consequently, no complex machine adjustment has to be carried out, since the required localization of the light beam is achieved by this external welding energy absorbing device which can be arranged exactly in the area of the desired weld in the area of the fixation site. A higher degree of automation of the welding apparatus is thus possible, involving at the same time higher accuracy and thus higher quality of the weld.
In addition to this, a distinction can be made between energy injection and fixation or sealing, respectively, of the welding site in the given arrangement, which makes an intensive flow of material possible. A displacement of material during the welding process and/or an intensive mixture of material are thus possible.
Furthermore, another advantage is that the method according to the invention is independent of the energy source, so that a variety of different radiation sources can be used.
As a particularly simple pre-fixation a heat shrink tubing can be used, which is applied to the pre-fixation site and is capable of fixing and sealing the fastening portion to be welded with the catheter shaft.
There are also several embodiments of welding energy absorbing devices possible. A particularly simple embodiment is a coloured tubing which can be applied via the pre-fixation exactly to the site at which the welding between balloon catheter and catheter shaft is to be carried out. In a further embodiment the pre-fixation is already locally coloured and thus serves both as pre-fixation and welding energy absorbing device. In addition to this, a coloured marking on the pre-fixation, for example a marking with a felt-tip pencil (Edding), can serve as welding energy absorbing device.
An alternative is a stiletto which can be inserted into the catheter shaft. On the stiletto a coloured area can be attached which can be positioned exactly at the site where the welding is desired. In this case, the welding is carried out “from within”.
As has been explained above, a variety of different radiation sources are possible, such as laser sources, monochromatic or polychromatic light sources or other electromagnetic radiation sources. In this context it is important to bear in mind that the welding substrate and the focussing device have to differ in their absorption behaviour to a high degree.
These and other objects, features, aspects and advantages of the present invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses preferred embodiments of the present invention.
Referring now to the attached drawings which form a part of this original disclosure:
Selected embodiments of the present invention will now be explained with reference to the drawings. It will be apparent to those skilled in the art from this disclosure that the following descriptions of the embodiments of the present invention are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Referring to
In
After arrangement of the pre-fixation 4 and tubing 5, the fixation site V is irradiated with homogenous radiation. This results in welding of the fastening portion 8 of the catheter balloon 1 with the desired portion of the catheter tubing 2.
The advantage of this method is that the assembly of the welding energy absorbing device already defines the localization of the welding site. The welding is carried out in an automated manner in a homogenously excited area without precise requirements with regard to the position of weld metal. In doing so, the irradiated area can also be considerably larger than the welding site itself.
After the welding has been carried out both the welding energy absorbing device and the pre-fixation 4 are removed.
In
After pre-fixation, for example by means of a heat shrink tubing 4 according to the embodiment of
It should also be noted that the weld metal or the light source has to be turned during the welding process or the light source has to be ring-shaped. The pre-fixation or the heat shrink tubing, respectively, also serves as welding protection tube to ensure an even distribution of heat.
As has been explained above, a variety of different radiation sources are possible, such as laser sources, monochromatic or polychromatic light sources or other electromagnetic radiation sources. In this context it is important to bear in mind that the welding substrate and the focussing device have to differ in their absorption behaviour to a high degree.
The terms of degree such as “substantially”, “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. These terms should be construed as including a deviation of at least ±5% of the modified term if this deviation would not negate the meaning of the word it modifies.
This application is based on European Patent Application No. 02029113.4-2310 filed on Dec. 31, 2002, and published on Jul. 7, 2004. The entire disclosure of European Patent Application No. 02029113.4-2310 is hereby incorporated herein by reference.
While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. Furthermore, the foregoing descriptions of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3528867 | Heller, Jr. et al. | Sep 1970 | A |
4251305 | Becker et al. | Feb 1981 | A |
4490421 | Levy | Dec 1984 | A |
4563181 | Wijayarathna et al. | Jan 1986 | A |
4721115 | Owens | Jan 1988 | A |
4748982 | Horzewski et al. | Jun 1988 | A |
4762129 | Bonzel | Aug 1988 | A |
4771777 | Horzewski et al. | Sep 1988 | A |
RE32983 | Levy | Jul 1989 | E |
4877031 | Conway et al. | Oct 1989 | A |
4892519 | Songer et al. | Jan 1990 | A |
4898591 | Jang et al. | Feb 1990 | A |
4921483 | Wijay et al. | May 1990 | A |
4944745 | Sogard et al. | Jul 1990 | A |
4978835 | Luijtjes et al. | Dec 1990 | A |
RE33561 | Levy | Mar 1991 | E |
5037404 | Gold et al. | Aug 1991 | A |
5047045 | Arney et al. | Sep 1991 | A |
5078702 | Pomeranz | Jan 1992 | A |
5102403 | Alt | Apr 1992 | A |
5135535 | Kramer | Aug 1992 | A |
5147317 | Shank et al. | Sep 1992 | A |
5154725 | Leopold | Oct 1992 | A |
5195978 | Schiffer | Mar 1993 | A |
5217482 | Keith | Jun 1993 | A |
5221270 | Parker | Jun 1993 | A |
5226888 | Arney | Jul 1993 | A |
5252159 | Arney | Oct 1993 | A |
5261879 | Brill | Nov 1993 | A |
5267958 | Buchbinder et al. | Dec 1993 | A |
5300025 | Wantink | Apr 1994 | A |
5304198 | Samson | Apr 1994 | A |
5328468 | Kaneko et al. | Jul 1994 | A |
5334147 | Johnson | Aug 1994 | A |
5357978 | Turk | Oct 1994 | A |
5370615 | Johnson | Dec 1994 | A |
5395334 | Keith et al. | Mar 1995 | A |
5410797 | Steinke et al. | May 1995 | A |
5413557 | Solar | May 1995 | A |
5413560 | Solar | May 1995 | A |
5425711 | Ressemann et al. | Jun 1995 | A |
5443457 | Ginn et al. | Aug 1995 | A |
5460185 | Johnson et al. | Oct 1995 | A |
5470315 | Adams | Nov 1995 | A |
5480383 | Bagaoisan et al. | Jan 1996 | A |
5489271 | Andersen | Feb 1996 | A |
5490837 | Blaeser et al. | Feb 1996 | A |
5496346 | Horzewski et al. | Mar 1996 | A |
5500180 | Anderson et al. | Mar 1996 | A |
5501759 | Forman | Mar 1996 | A |
5538510 | Fontirroche et al. | Jul 1996 | A |
5545138 | Fugoso et al. | Aug 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5549552 | Peters et al. | Aug 1996 | A |
5549553 | Ressemann et al. | Aug 1996 | A |
5549563 | Kronner | Aug 1996 | A |
5588964 | Imran et al. | Dec 1996 | A |
5605543 | Swanson | Feb 1997 | A |
5634902 | Johnson et al. | Jun 1997 | A |
5649909 | Cornelius | Jul 1997 | A |
5656029 | Imran et al. | Aug 1997 | A |
5658251 | Ressemann et al. | Aug 1997 | A |
5662622 | Gore et al. | Sep 1997 | A |
5667493 | Janacek | Sep 1997 | A |
5669932 | Fischell et al. | Sep 1997 | A |
5695483 | Samson | Dec 1997 | A |
5702439 | Keith et al. | Dec 1997 | A |
5711909 | Gore et al. | Jan 1998 | A |
5728067 | Enger | Mar 1998 | A |
5733400 | Gore et al. | Mar 1998 | A |
5738667 | Solar | Apr 1998 | A |
5743875 | Sirhan et al. | Apr 1998 | A |
5755685 | Andersen | May 1998 | A |
5755687 | Donlon | May 1998 | A |
5772669 | Vrba | Jun 1998 | A |
5775685 | Yamaoka et al. | Jul 1998 | A |
5807355 | Ramzipoor et al. | Sep 1998 | A |
5820594 | Fontirroche et al. | Oct 1998 | A |
5820613 | Van Werven-Franssen et al. | Oct 1998 | A |
5823995 | Fitzmaurice et al. | Oct 1998 | A |
5824173 | Fontirroche et al. | Oct 1998 | A |
5833604 | Houser et al. | Nov 1998 | A |
5836965 | Jendersee et al. | Nov 1998 | A |
5843032 | Kastenhofer | Dec 1998 | A |
5843050 | Jones et al. | Dec 1998 | A |
5851464 | Davila et al. | Dec 1998 | A |
5882336 | Janacek | Mar 1999 | A |
5891056 | Ramzipoor | Apr 1999 | A |
5891110 | Larson et al. | Apr 1999 | A |
5902290 | Peacock, III et al. | May 1999 | A |
5906619 | Olsen et al. | May 1999 | A |
5938645 | Gordon | Aug 1999 | A |
5951539 | Nita et al. | Sep 1999 | A |
5980486 | Enger | Nov 1999 | A |
6004291 | Ressemann et al. | Dec 1999 | A |
6010521 | Lee et al. | Jan 2000 | A |
6017323 | Chee | Jan 2000 | A |
6027477 | Kastenhofer | Feb 2000 | A |
6030405 | Zarbatany et al. | Feb 2000 | A |
6036670 | Wijeratne et al. | Mar 2000 | A |
6036715 | Yock | Mar 2000 | A |
6059770 | Peacock, III et al. | May 2000 | A |
6066114 | Goodin et al. | May 2000 | A |
6071273 | Euteneuer et al. | Jun 2000 | A |
6102890 | Stivland et al. | Aug 2000 | A |
6123698 | Spears et al. | Sep 2000 | A |
6129708 | Enger | Oct 2000 | A |
6152909 | Bagaoisan et al. | Nov 2000 | A |
6159229 | Jendersee et al. | Dec 2000 | A |
6165166 | Samuelson et al. | Dec 2000 | A |
6187130 | Berard et al. | Feb 2001 | B1 |
6193686 | Estrada et al. | Feb 2001 | B1 |
6210364 | Anderson et al. | Apr 2001 | B1 |
6254549 | Ramzipoor | Jul 2001 | B1 |
6273874 | Parris | Aug 2001 | B1 |
6273899 | Kramer | Aug 2001 | B1 |
6283939 | Anderson et al. | Sep 2001 | B1 |
6306105 | Rooney et al. | Oct 2001 | B1 |
6306124 | Jones et al. | Oct 2001 | B1 |
6309402 | Jendersee et al. | Oct 2001 | B1 |
6319244 | Suresh et al. | Nov 2001 | B2 |
6344029 | Estrada et al. | Feb 2002 | B1 |
6361529 | Goodin et al. | Mar 2002 | B1 |
6368302 | Fitzmaurice et al. | Apr 2002 | B1 |
6375899 | Ackley et al. | Apr 2002 | B1 |
6402720 | Miller et al. | Jun 2002 | B1 |
6425898 | Wilson et al. | Jun 2002 | B1 |
6475184 | Wang et al. | Nov 2002 | B1 |
6475209 | Larson et al. | Nov 2002 | B1 |
6488694 | Lau et al. | Dec 2002 | B1 |
6527789 | Lau et al. | Mar 2003 | B1 |
6530938 | Lee et al. | Mar 2003 | B1 |
6565588 | Clement et al. | May 2003 | B1 |
6575958 | Happ et al. | Jun 2003 | B1 |
6575993 | Yock | Jun 2003 | B1 |
6579278 | Bencini | Jun 2003 | B1 |
6633648 | Bauck | Oct 2003 | B1 |
6648854 | Patterson et al. | Nov 2003 | B1 |
6652507 | Pepin | Nov 2003 | B2 |
6663648 | Trotta | Dec 2003 | B1 |
6685720 | Wu et al. | Feb 2004 | B1 |
6685721 | Kramer | Feb 2004 | B1 |
6692460 | Jayaraman | Feb 2004 | B1 |
6695812 | Estrada et al. | Feb 2004 | B2 |
6702750 | Yock | Mar 2004 | B2 |
6702781 | Reifart et al. | Mar 2004 | B1 |
6733473 | Reifart et al. | May 2004 | B1 |
6733487 | Keith et al. | May 2004 | B2 |
6770038 | Balbierz et al. | Aug 2004 | B2 |
6814744 | Yang et al. | Nov 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6821281 | Sherman et al. | Nov 2004 | B2 |
6821287 | Jang | Nov 2004 | B1 |
6887219 | Wantink | May 2005 | B2 |
6893417 | Gribbons et al. | May 2005 | B2 |
6979342 | Lee et al. | Dec 2005 | B2 |
7001358 | Fitzmaurice et al. | Feb 2006 | B2 |
7025258 | Chang | Apr 2006 | B2 |
7037291 | Lee et al. | May 2006 | B2 |
7118551 | Lee et al. | Oct 2006 | B1 |
7309334 | von Hoffmann | Dec 2007 | B2 |
7445684 | Pursley | Nov 2008 | B2 |
7527606 | Oepen | May 2009 | B2 |
20010021840 | Suresh et al. | Sep 2001 | A1 |
20010034514 | Parker | Oct 2001 | A1 |
20020007146 | Omaleki et al. | Jan 2002 | A1 |
20020115963 | Clarke et al. | Aug 2002 | A1 |
20030105427 | Lee et al. | Jun 2003 | A1 |
20030163082 | Mertens | Aug 2003 | A1 |
20040010243 | Klint | Jan 2004 | A1 |
20040059292 | Hisamatsu et al. | Mar 2004 | A1 |
20040193140 | Griffin et al. | Sep 2004 | A1 |
20040236367 | Brown et al. | Nov 2004 | A1 |
20050267408 | Grandt et al. | Dec 2005 | A1 |
20060270977 | Fisher et al. | Nov 2006 | A1 |
20070016132 | Oepen et al. | Jan 2007 | A1 |
20070016165 | Von Oepen et al. | Jan 2007 | A1 |
20070021771 | Oepen et al. | Jan 2007 | A1 |
20070060910 | Grandt et al. | Mar 2007 | A1 |
20070078439 | Grandt et al. | Apr 2007 | A1 |
20070083188 | Grandt et al. | Apr 2007 | A1 |
20070167913 | Elkins et al. | Jul 2007 | A1 |
20090018502 | Reifart et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
19729499 | Jan 1999 | DE |
0029185 | May 1981 | EP |
0408198 | Jan 1991 | EP |
0414350 | Feb 1991 | EP |
0518205 | Dec 1992 | EP |
0806220 | Nov 1997 | EP |
0916359 | May 1999 | EP |
1 234 595 | Aug 2002 | EP |
1435252 | Jul 2004 | EP |
1518581 | Mar 2005 | EP |
WO 9217236 | Oct 1992 | WO |
WO 9856448 | Dec 1998 | WO |
WO 0170321 | Sep 2001 | WO |
WO 2005113047 | Dec 2005 | WO |
WO 2005118044 | Dec 2005 | WO |
WO 2005118045 | Dec 2005 | WO |
WO 2006104591 | Oct 2006 | WO |
WO 2006127929 | Nov 2006 | WO |
WO 2006127931 | Nov 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060071371 A1 | Apr 2006 | US |