The present invention relates to a method for joining components under dynamic load, in particular gas turbine components, according to the definition of the species in patent claim 1.
Components of gas turbines under high dynamic loads in particular are as a rule manufactured as forgings since forgings have greater strength compared to castings. According to the related art, friction welding, in particular rotational friction welding or linear friction welding, is used for joining such components under dynamic load. Strength values, which correspond to the strength values of the forged material, may be achieved for the joint area between two components by using friction welding. Rotational friction welding is among the group of what is known as pressure welding techniques which all have the disadvantage that they must be carried out on complex machines and involve expensive manufacturing resources. Joining components under dynamic load via friction welding or pressure welding is thus complex and expensive. Moreover, a welding bulge (known as flash) forms during friction welding or pressure welding which requires complex further machining. Fusion welding techniques known from the related art, however, cannot be used for joining components under dynamic load since the strength of fusion welded joints is not adequate for components under high dynamic loads.
Therefore, the object of the present invention is based on providing a novel method for joining components under dynamic load, in particular gas turbine components.
This object is achieved by a method for joining components under dynamic load, in particular gas turbine components, according to patent claim 1. According to the present invention, at least two components to be joined are joined together using laser build-up welding.
Within the scope of the present invention it is proposed that components under dynamic load be joined using laser powder build-up welding. According to the related art, laser powder build-up welding is merely used for manufacturing components or new parts by way of what is known as rapid manufacturing processes. The present invention proposes for the first time the use of laser powder build-up welding for joining components under dynamic load. The present invention is based on the recognition that, using laser powder build-up welding, joints may be achieved whose strength values are higher than the strength values of forged components. This is due to the fact that in laser powder build-up welding the welded material cools down rapidly and freezes in position. The structure of the weld being formed in the process is fine-grained. The joint produced in this way thus has outstanding strength characteristics and is particularly well suited for joining components under dynamic load. Additional advantages of the present invention are the high flexibility of laser powder build-up welding as well as little pretreatment and after-treatment complexity of the weld.
According to an advantageous refinement of the present invention, the components to be joined are aligned relative to one another and are joined together in this aligned position by an auxiliary weld. Subsequently to producing the auxiliary weld, the actual joint of the components is established via laser powder build-up welding.
Preferred refinements of the present invention arise from the subclaims and the following description. Without being restricted thereto, an exemplary embodiment of the present invention is explained in greater detail based on the drawing.
The present invention is described in greater detail in the following with reference to
Within the scope of the method according to the present invention, the two components are joined together at flanges 10, 11 by initially aligning components 10, 11 relative to one another and temporarily joining them in this aligned position by an auxiliary weld 12. Subsequently to producing auxiliary weld 12, both components are joined together permanently by laser powder build-up welding, a weld produced by laser powder build-up welding being identified by reference numeral 13 in
As is apparent in
During laser powder build-up welding, the powder is melted and is subject to a rapid cool-down so that the melted material freezes in position during cool-down. A fine-grained structure forms in the area of weld 13. Weld 13 thus has strength values which are higher than the strength values of the base material of the components to be joined together. Cooling-down of the material during laser powder build-up welding and thus the strength value of the resulting weld 13 may be influenced by appropriate cooling.
As is apparent in
The exemplary embodiment of
It should be pointed out that a weld 13 having a gradient may also be produced in that the material used for laser powder build-up welding is adapted, for example, or that the welding conditions, such as the temperature, are modified.
Using the present invention, joints on components under high dynamic loads may be produced cost-effectively without applying the great force required in friction welding. This makes it possible to dispense with complex equipment, machines, and special manufacturing resources. Laser powder build-up welding is very flexible and requires only little after-treatment of the weld. Strength values of the weld may be achieved which are higher than the strength values of the base material of the components to be joined together.
| Number | Date | Country | Kind |
|---|---|---|---|
| 10 2004 006 154.8 | Feb 2004 | DE | national |
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/DE05/00132 | 1/28/2005 | WO | 8/7/2006 |