The present application claims priority from Japanese Patent Application Nos. 2014-178805 and 2014-178806 both filed on Sep. 3, 2014, the entire contents of which are incorporated herein by reference.
The present invention relates to a method for connecting conductor portions of insulated wires, each having an insulating coating made of an insulating material and covering the conductor portion.
When forming an electric circuit of an automobile using a wire harness, multiple branching points are provided along insulated wires of the wire harness. At such a branching point on the insulated wires, insulating coatings of a plurality of insulated wires are removed to expose their conductor portions, and the exposed conductor portions are connected to each other.
Related art methods for connecting insulated wires include a “crimping joint” using a crimp joint terminal for a joint portion (see, e.g., JP2009-129812A), and a “welding joint” applying pressure and electric current or ultrasonic vibration to a joint portion (see, e.g., JP9-82375A).
According to the crimping joint, a plurality of insulated wires are connected to each other by crimping a crimp joint terminal onto conductor portions of the insulated wires where a joint portion is to be formed. Accordingly, it is easy to determine whether the connection is in a good condition from the external appearance of the crimp joint terminal that has been crimped. That is, it is possible to determine whether the joint portion of the insulated wires is firmly fixed from the external appearance of the crimp joint terminal. As a result, reliable mechanical connection can be obtained.
According to the welding joint, even when connecting a number of conductor portions of insulated wires to each other, heat or ultrasonic vibration required for the connection can be applied to an inner part of a joint portion, and contact resistance in the joint portion can be suppressed. As a result, reliable electric connection can be obtained.
However, as for the crimping joint, when the number of insulated wires to be connected increases, influence of irregularity such as looseness of conductor portions of the insulated wires becomes large so that connection among the conductor portions cannot be made to be in a good condition in an inner part of the joint portion, resulting in increased contact resistance. Accordingly, with the crimping joint, only a relatively small number of insulated wires can be connected. That is, when connecting a number of insulated wires by the crimping joint, there may arise a problem in reliability of electric connection. On the other hand, as for the welding joint, it is difficult to determine whether a joint portion of insulated wires is firmly fixed from its external appearance, so that there may arise a problem in reliability of mechanical connection.
In recent years, from the viewpoint of environmental consideration, it is an important issue in the automobile industry to improve fuel efficiency by weight reduction of a vehicle. To this end, there is an increasing interest in aluminum electric wires having conductor portions made of aluminum or aluminum alloy, which is lighter in weight than copper or copper alloy used as conductor portions of copper electric wires.
Thus, it is possible that aluminum electric wires and copper electric wires are be mixedly used in a wire harness. In such a case, at a branching point of insulated wires, a conductor portion made of aluminum or aluminum alloy (hereinafter, “aluminum conductor portion”) and a conductor portion made of copper or copper alloy (hereinafter, “copper conductor portion”) may be connected to each other.
On aluminum conductor portions, an oxide film is formed. Therefore, a crimp joint terminal may be formed with serrations or a through hole, providing a similar function as the serrations with a simple configuration, so as to break the oxide film by the serrations or the through hole at the time of crimping the crimp joint terminal to reduce contact resistance.
When a copper conductor portion and an aluminum conductor portion are mixedly joined and a through hole, providing a similar function as serrations with a simple configuration, is formed in a crimp joint terminal, it is difficult to place the aluminum conductor portion on the through hole due to irregularity such as looseness of the copper conductor portion and the aluminum conductor portion. Thus, the oxide film of the aluminum conductor portion may not be broken by the through hole, and as a result, reliability of electric connection is lowered.
Illustrative aspects of the present invention provide a method for connecting insulated wires which can provide reliable electric and mechanical connection at a joint portion of the insulated wire, even when connecting a large number of insulated wires.
According to an illustrative aspect of the present invention, a method for connecting a plurality of insulated wires to each other is provided. Each of the insulated wires has a conductor portion and an insulating coating covering the conductor portion. The insulating coating is made of an insulating material. The method includes stripping the insulating coating of each of the insulated wires to expose the conductor portion such that the insulating coating is removed from a section of the insulated wire along a direction in which the insulated wire extends and at a location away from an end portion of the insulated wire, and connecting the conductor portions of the insulated wires. The connecting includes crimping a crimp joint terminal onto the exposed conductor portions to join the exposed conductor portions, and after the crimping, welding the conductor portions by applying pressure and electric current or ultrasonic vibration to the crimp joint terminal.
The stripping may include adjusting the sections of the insulated wires, from which the insulated coatings are removed, to be substantially equal to each other in the direction in which the insulated wires extend. The connecting the conductor portions may include aligning the sections of the insulated wires, from which the insulating coatings are removed, at both ends of the respective sections.
The insulated wires may include an aluminum electric wire and a copper electric wire. The conductor portion of the aluminum electric wire is made of aluminum or aluminum alloy. The conductor portion of the copper electric wire is made of copper or copper alloy. The connecting the conductor portions may include laying the conductor portion of the aluminum electric wire over at least a portion of a through hole formed in the crimp joint terminal.
The through hole may be formed in a portion of the crimp joint terminal forming a bottom portion of the crimp joint terminal after the crimping.
An exemplary embodiment of the invention will be described below in detail with reference to the drawings.
Each insulated wire 10 has a conductor portion 11, and an insulating coating 12 as an insulating material with which the outer circumference of the conductor portion 11 is coated. The conductor portion 11 includes a bundle of a plurality of strands 11a made of a conductive wire material such as copper or copper alloy. The conductor portion 11 is not limited to a bundle of a plurality of strands 11a, but may be a single core wire. The insulating coating 12 is made of insulating synthetic resin, and covers the conductor portion 11 to surround the outer circumference of the conductor portion 11 so as to protect the conductor portion 11 in an insulating manner from the outside.
In each of the two insulated wires 10, the insulating coating 12 is removed from a section of the insulated wire 10 along a direction in which the insulated wire 10 extends and at a location away from an end portion of the insulated wire 10 (hereinafter referred to as “intermediately-stripping the insulating coating is”).
Next, a crimp joint terminal 20 for use in the method according to the exemplary embodiment of the invention will be described. The crimp joint terminal 20 crimps the exposed conductor portions 11 of the two insulated wires 10 to join the conductor portions 11 to each other. The crimp joint terminal 20 is formed by die press work or the like out of a plate-like member made of metal such as copper or copper alloy.
The crimp joint terminal 20 has a substantially U-shape in its cross section perpendicular to the extending direction of the insulated wires 10 mounted thereon. The U-shape has an opening on its top. Thus, the exposed conductor portions 11 of the two insulated wires 10 can be mounted on the crimp joint terminal 20 before the crimp joint terminal 20 is crimped to the exposed conductor portions 11 of the insulated wires 10. When the crimp joint terminal 20 is crimped to the conductor portions 11, the conductor portions 11 of the two insulated wires 10 are mounted on the approximately U-shaped crimp joint terminal 20 that has not been crimped yet, and the crimp joint terminal 20 is then crimped to surround the conductor portions 11 of the two insulated wires 10 by means of a not-shown crimping jig such as a so-called crimper or a so-called anvil.
Next, a work process in the method for connecting insulated wires will be described with reference to
First, an insulating coating intermediately-stripping step is carried out (see
After that, in a conductor portion connecting step, the crimp joint terminal 20 is crimped onto the exposed conductor portions 11 of the two insulated wires 10 to join the conductor portions 11 (see
After that, in the conductor portion connecting step, electrodes E, which are generally used for welding joint, are pressed against the crimp joint terminal 20, and pressure and electric current are applied to the crimp joint terminal 20 from the electrodes 20, so as to weld and join the conductor portions 11 of the two insulated wires 10 (see
After that, the joint portion 30 including the crimp joint terminal 20 after the welding joint is covered with the insulating tape 40 (see
Next, contact resistances in the joint portion 30 after crimping joint and after welding joint further performed after the crimping joint will be compared with each other with reference to
From the graph shown in
From the graph shown in
In the method according to the exemplary embodiment, an exposed part of each conductor portion 11 is covered with the insulating coating 12 in its opposite end portions in its extending direction. Accordingly, irregularity such as looseness hardly occurs. Thus, conductor portions 11 of a plurality of insulated wires 10 can be crimped and connected to each other easily. Further, by performing the welding joint after the crimping joint, reliable electric connection of conductor portions of a large number of insulated wires 10 can be ensured by the welding joint in addition to reliable mechanical connection ensured by the crimping joint. Accordingly, reliable electric and mechanical connection can be ensured at the joint portion 30 of the insulated wires 10, even when connecting a large number of insulated wires 10.
In addition, in the method according to the exemplary embodiment, the sections of the insulated wires 10 along which the conductor portions 11 are exposed are substantially equal to each other. Accordingly, by connecting the conductor portions 11 of the insulated wires 10 such that the sections along which the conductor portions 11 are exposed are aligned with each other at both ends of the respective sections, a portion to be insulated and protected can be provided to fit within a given area easily. As a result, the joint portion can be insulated and protected easily by the insulating tape 40 or the like.
In the method according to the exemplary embodiment, two insulated wires 10 are joined. However, the number of insulated wires 10 to be joined is not limited to two.
Another exemplary embodiment of the invention will be described below in detail with reference to
Each copper electric wire 10C has a copper conductor portion 11C, and an insulating coating 12 as an insulating material with which the outer circumference of the copper conductor portion 11C is coated. The copper conductor portion 11C is a bundle of a plurality of copper strands 13c made of a wire material such as copper or copper alloy. The copper conductor portion 11C is not limited to a bundle of a plurality of copper strands 13c, but may be a single core wire. The insulating coating 12 is made of insulating synthetic resin, which coats and surrounds the outer circumference of the copper conductor portion 11C so as to protect the copper conductor portion 11C in an insulating manner from the outside.
In each copper electric wire 10C, the insulating coating 12 is removed from a section of the copper electric wire 10C along a direction in which the copper electric wire 10C extends and at a location away from an end portion of the copper electric wire 10C (the insulating coating is intermediately-stripped).
Each aluminum electric wire 10A has an aluminum conductor portion 11A, and an insulating coating 12 as an insulating material with which the outer circumference of the aluminum conductor portion 11A is coated. The aluminum conductor portion 11A is a bundle of a plurality of aluminum strands 13a made of a wire material such as aluminum or aluminum alloy. The aluminum conductor portion 11A is not limited to a bundle of a plurality of aluminum strands 13a, but may be a single core wire. The insulating coating 12 is made of insulating synthetic resin, which coats and surrounds the outer circumference of the aluminum conductor portion 11A so as to protect the aluminum conductor portion 11A in an insulating manner from the outside.
Intermediate-stripping is performed on the aluminum electric wires 10A in the same manner as the copper electric wires 10C.
The crimp joint terminal 20 according to the exemplary embodiment has a through hole 21. The through hole 21 is formed in a portion of the crimp joint terminal 20 forming a bottom portion 20a of the crimp joint terminal 20 when the crimp joint terminal 20 is crimped. The through hole 21 serves as a so-called serration, and is configured to break an oxide film of the exposed aluminum conductor portion 11A of the aluminum electric wire 10A when the crimp joint terminal 20 is crimped. Considering the strength and the like of the crimp joint terminal 20, the area over which the through hole 21 is formed cannot be made so large, but the through hole 21 has a simple configuration as compared with serrations so that it is easy to form.
Next, a work process in the method for connecting insulated wires will be described with reference to
First, an insulating coating intermediately-stripping step is carried out (see
In addition, when the conductor portions 11 of the insulated wires 10 exposed by intermediately-stripping the insulating coatings 12 are connected to each other in this manner, a larger number of branches can be obtained using a smaller number of insulated wires in the joint portion 30 of the insulated wires 10, as compared with the case where conductor portions exposed at terminal portions of insulated wires are joined. In order to form branches of an odd number of insulated wires 10 in the joint portion 30, it will go well if a branch electric wire that will not be used is processed as a dummy electric wire. In the insulating coating intermediately-stripping step, the sections of the insulated wires 10 from which the insulating coatings 12 are removed are adjusted to be substantially equal to each other in the direction in which the insulated wires 10 extend.
After that, in a conductor portion connecting step, the crimp joint terminal 20 is crimped onto two kinds of exposed conductor portions 11 of the plurality of insulated wires 10 including aluminum electric wires 10A and copper electric wires 10C to join the conductor portions 11 (see
After that, in the conductor portion connecting step, electrodes E, which are generally used for welding joint, are pressed against the crimp joint terminal 20, and pressure and electric current are applied to the crimp joint terminal 20 from the electrodes E, so as to weld and join the conductor portions 11 of the insulated wires 10 (see
After that, the joint portion 30 including the crimp joint terminal 20 after the welding joint is covered with the insulating tape 40 (see
Next, contact resistances in joint portions depending on a difference in disposed position of each aluminum conductor portion 11A relative to the crimp joint terminal 20 and a difference between presence and absence of welding joint after crimping joint will be compared with reference to
In the graphs shown in
In the method according to the exemplary embodiment, the insulating coatings 12 of the aluminum electric wires 10A and the copper electric wires 10C are removed over predetermined sections in their extending directions and at locations away from their end portions of the aluminum electric wires 10A and the copper electric wires 10C respectively to thereby expose the aluminum conductor portions 11A and the copper conductor portions 11C. Accordingly, the aluminum conductor portions 11A and the copper conductor portions 11C can be prevented from irregularity such as looseness. Thus, when crimping the crimp joint terminal 20 onto the conductor portions 11 of the insulated wires 10 including two kinds of insulated wires 10, that is, the aluminum electric wires 10A and the copper electric wires 10C, to join the conductor portions 11, the aluminum conductor portion 11A can be easily laid over the through hole 21 that functions in a similar manner as serrations but with a simple configuration. Therefore, the oxide film of each aluminum conductor portion 11A can be reliably broken by the through hole 21. In addition, welding joint is further performed after crimping joint. Accordingly, reliable electric and mechanical connection can be ensured at the joint portion 30 of the insulated wires 10, even when connecting a large number of insulated wires 10 including the aluminum electric wires 10A and the copper electric wires 10C with a simple configuration.
In addition, in the method according to the exemplary embodiment, when crimping joint is performed by the crimp joint terminal 20, the aluminum conductor portion 11A is mounted on the bottom portion 20a of the crimp joint terminal 20 so that the aluminum conductor portion 11A can be laid over at least a portion of the through hole 21. Accordingly, the aluminum conductor portions 11A can be easily laid over at least a portion of the through hole 21.
In the method according to the exemplary embodiment, the through hole 21 is formed in the bottom portion 20a of the crimp joint terminal 20, but the location of the through hole 21 is not limited thereto. For example, the through hole 21 may be formed in a different portion of the crimp joint terminal 20 such as a side portion of the crimp joint terminal 20.
While the crimp joint terminal 20 has a substantially U-shape in its cross section before crimping in the methods according to the exemplary embodiments described above, the configuration of the crimp joint terminal 20 is not limited thereto. The crimp joint terminal 20 may have a different shape as long as it can join conductor portions 11 of a plurality of insulated wires 10 by crimping. For example, the crimp joint terminal 20 may have a cylindrical configuration.
In the methods according to the exemplary embodiments described above, in the insulating coating intermediately-stripping step, the sections of the insulated wires 10 from which insulating coatings 12 are removed are adjusted to be substantially equal to each other in the direction in which the insulated wires 10 extend. However, the removal sections may differ among the insulated wires 10 as long as the conductor portions 11 of the insulated wires 10 exposed by intermediately-stripping the insulating coatings 12 can be joined.
Further, in the methods according to the exemplary embodiments described above, pressure and electric current are applied to the crimp joint terminal 20 for welding joint using the electrodes E. Alternatively, pressure and ultrasonic vibration may be applied to the crimp joint terminal 20 by using an ultrasonic horn or the like.
While the present invention has been described with reference to certain exemplary embodiments thereof, the scope of the present invention is not limited to the exemplary embodiments described above, and it will be understood by those skilled in the art that various changes and modifications may be made therein without departing from the scope of the present invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2014-178805 | Sep 2014 | JP | national |
2014-178806 | Sep 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8288653 | Stroh | Oct 2012 | B2 |
9281574 | Kawamura | Mar 2016 | B2 |
20090133927 | Onuma | May 2009 | A1 |
20090218134 | Stroh et al. | Sep 2009 | A1 |
20120298645 | Kleespiess et al. | Nov 2012 | A1 |
20130293045 | Kajita et al. | Nov 2013 | A1 |
20150064991 | Kawamura et al. | Mar 2015 | A1 |
20160064885 | Matsuoka et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
102870292 | Jan 2013 | CN |
103299493 | Sep 2013 | CN |
59-18370 | Feb 1984 | JP |
6-267597 | Sep 1994 | JP |
6-267598 | Sep 1994 | JP |
9-82375 | Mar 1997 | JP |
2002-191109 | Jul 2002 | JP |
2007-134307 | May 2007 | JP |
2008-187814 | Aug 2008 | JP |
2009-129812 | Jun 2009 | JP |
2010-61870 | Mar 2010 | JP |
2014-143205 | Aug 2014 | JP |
2016-54037 | Apr 2016 | JP |
Entry |
---|
Communication dated Aug. 23, 2016, issued by the Japanese Patent Office in counterpart Japanese application No. 2014-178805. |
Communication dated Jun. 30, 2017, from the State Intellectual Property Office of People's Republic of China in counterpart Application No. 201510556677.8. |
Office Action dated May 19, 2017 by the Japanese Patent Office in counterpart Japanese Patent Application No. 2016-183761. |
Communication dated Feb. 23, 2018, from the State Intellectual Property Office of People's Republic of China in counterpart Application No. 201510556677.8. |
Number | Date | Country | |
---|---|---|---|
20160064885 A1 | Mar 2016 | US |