The invention relates to methods for constructing a concrete floor in multistorey buildings.
In the construction industry modular buildings are becoming more popular as they can be largely constructed offsite and assembled on site into a finished product in shorter timeframes than traditional multi-storey buildings. Modular construction involves building and preparing building modules offsite in a factory setting before transporting and installing the module at an installation location. Despite the time saving benefits of modular construction techniques there is a constant pursuit to improve these methods of construction with the aim of achieving time savings and cost savings in the overall construction of the building.
It is in light of these pursuits for efficiencies in current the construction of modular buildings that the invention was conceived.
The invention provides a method of forming a concrete floor of a multistorey building, the method including: installing a first building module having a first precast concrete floor slab adjacently spaced from a second building module having a second precast concrete floor slab, at least the first precast concrete floor slab supporting an upstanding support member for supporting an upper floor; forming a channel between the spaced first and second precast concrete floor slabs by providing supporting formwork between the floor slabs for supporting poured concrete; and pouring concrete into the channel to form a concrete connection between the first and second precast slabs, thereby forming a concrete floor of a building.
An advantage of providing a method that uses concrete to connect adjacently spaced precast floor slabs, such as floor slabs in a building module, is that the step of pouring of concrete to connect the slabs can be decoupled from the construction and assembly of the building, particularly where the building is constructed with modular building units. Furthermore, the amount of formwork used with the present method of using hybrid wet and precast components is reduced compared to traditional multilevel building methods, when that formwork is provided as a separate structure to the precast floor slabs.
In one embodiment the method includes installing a third building module with a third precast concrete floor slab above the first precast concrete floor slab and supporting the third precast concrete floor slab on the upstanding support member. The method may include using a temporary support member or a permanent support member as the upstanding support member. The method may include using an upstanding support member in the form of a wall structure. The method may include installing the third precast concrete floor slab before the concrete is poured into the channel to form the concrete connection between the first and second precast slabs.
In another embodiment the method includes erecting formwork and pouring concrete to form a concrete beam connecting the floor slabs, thereby forming a floor of a building having a cast concrete beam. The method can include installing multiple precast floor slabs and casting beams extending between the slabs in different directions, such as perpendicular cast beams.
In another embodiment the method includes precasting the first precast concrete floor slab to have a first portion and a second portion, a thickness of the second portion being greater than a thickness of the first portion. The second portion may be precast to create an integrally formed concrete beam. The integrally formed concrete beam may span a length or width of the concrete slab. The method may include pouring the concrete to a thickness greater than the thickness the first portion of the first concrete floor slab. The method may further include pouring the concrete to a thickness substantially equal to the thickness of the second portion of the first concrete floor slab.
In another embodiment the method includes pouring the concrete to be level with a top surface of the first and second precast concrete floor slabs. The method may include precasting the first concrete floor slab to include a steel beam at least partially embedded into the first precast concrete floor slab.
The method preferably includes installing the slabs in elevation to define an upper storey floor. In a preferred embodiment the first and second precast floor slabs are each formed as part of a building modular, where building modules can be assembled one above the other with floor slabs suspended in elevation one adjacent the other.
The method may also include vertically inserting a pre-fabricated concrete wall panel in between the adjacently spaced precast floor slabs, erecting formwork between the precast floor slabs and pouring concrete into the formwork to tie the vertical wall panel to the floor slabs. Installing precast slabs vertically to form a wall between floor slabs, particularly elevated floor slabs, and then tying the wall slab to the floor slabs by way of the wet joint defined by the in situ poured concrete, provides an efficient means of installing structural support in a building.
The method also preferably includes post tensioning the precast floor slabs by, before pouring concrete into the channel, installing a conduit between bores extending through the first precast floor slab and the second precast floor slab to form a tensioning passage that extends through both the first and second precast floor slabs;
Post tensioning of the formed connection, or ‘wet joint’ once it has dried, and the floor slabs increases the strength of the resulting concrete floor structure by compressing the concrete slabs. It is possible to tension the full span of a slab made from multiple precast concrete floor slabs. Alternatively, the concrete floor can be reinforced using reinforcement bars embedded into the poured and/or precast concrete.
The method could also include precasting any of the precast concrete floor slabs to include an integrally formed beam. For example, the first precast floor slab could have an integrally cast beam.
By providing a method that uses a combination of poured and precast beams it is possible to reduce the number of slab to beam connections, which can be complex and time consuming. In addition, by providing a precast concrete slab with integrally formed structural precast beams the remaining areas of the precast slab can be thinner than a slab with a constant thickness. In other words, by strengthening targeted areas of the precast concrete slab it is possible to reduce the overall weight of the slab for a given floor space. By reducing the weight for a given floor space the size of the precast concrete slab, or the building module that the precast concrete slab forms, can be increased while maintaining the same weight. This is beneficial as weight is a limiting factor dictating the size of building modules (the building modules need to be transported and lifted into position).
The second precast concrete slab may also have an integrally formed beam. The integrally formed beam of the second precast concrete slab may be co-axial with the integrally formed beam of the first precast concrete slab, when the second precast concrete slab is adjacent to the first precast concrete slab. Once the poured concrete beam has set the precast beam in the first precast concrete slab and the precast beam in the second precast concrete slab may form a single continuous beam.
The first precast concrete slab may have a second precast beam. The second precast beam in the first precast concrete slab may be perpendicular to the first beam in the first precast concrete slab.
The first precast concrete slab may have a reinforcing bar or angle that extends from the first precast concrete slab to anchor the first precast concrete slab to the poured concrete beam.
The first precast concrete slab may form the base of a building module. The first precast concrete slab, or the building module, may be made in a first location and transported to a second location for installation.
The first precast concrete slab may form the base of a building module. The first precast concrete slab, or the building module, may be made in a first location and transported to a second location for installation.
The invention also provides a method of forming a concrete floor of a multistorey building, the method including: installing a first building module having a first precast concrete floor slab adjacently spaced from a second building module having a second precast concrete floor slab, the first precast concrete slab having a first aperture extending through the first pre-cast concrete slab and the second concrete slab having a second aperture extending through the second pre-cast concrete slab; installing a conduit between the first aperture and the second aperture to form a tensioning passage that extends through both the first and second pre-cast concrete slabs; forming a channel between the spaced first and second precast floor slabs by providing supporting formwork between the floor slabs for supporting poured concrete; and pouring concrete into the channel to form a concrete connection between the first and second precast slabs, thereby forming a concrete floor of a building.
The method may include feeding a tensioning cable through the tensioning passage and tensioning the tensioning cable to post-tension the concrete floor.
An embodiment, incorporating all aspects of the invention, will now be described by way of example only with reference to the accompanying drawings in which;
The figures illustrate building units, or modules 20, 22, 24, 26, including respectively floor slabs 10, 12, 14, 16. Specifically, the floor slabs from adjacently spaced modules, are shown as ‘stitched’ together, in other words joined together by in situ wet joint connections of concrete. In the embodiment described, the connections are formed to create in situ beams for reinforcing a finished floor structure. The in situ formed joins, preferably in the form of beams, are structural joins that contribute to the structural stability of the building and therefore reduce the amount of vertical support required in the vicinity of the beams.
The floor slabs can be arranged in any orientation. In the embodiment illustrated the floor slabs, or building modules, are arranged side by side in two directions across a building storey (i.e. installing floor slabs a single horizontal plane). This means that the concrete is applied, by pouring or even by spraying, to create poured beams extending in multiple directions, such as in perpendicular directions as illustrated in the drawings. Installing the next level of the modular building 100 requires installing floor slabs above the already installed precast concrete floor slabs (i.e. installing vertically).
An advantage with the presently described system and method of forming a concrete floor of a multistorey building, and indeed the system and method of forming a multistorey building itself, is that the erection of the framework in the building, namely in the form of building units (modules), is decoupled from the process of joining the building units together.
In known building systems the floor of one storey needs to be completed, or joined together, by concreting to a substantially finished state before the walls can be erected on that floor. Furthermore, the walls need to be erected before the floor of the next storey up can be erected and supported by the walls.
In the present system and method, the framework including floor slabs and upright supports of multiple storeys can be erected in advance of the floors below being stitched together with concrete. This decoupling of erecting multiple storeys from concreting a floor increases building efficiencies and decreases building time because it is not necessary to wait for a freshly poured concrete floor to dry before the next level up can be built.
The in situ poured beams can either be tensioned by post tensioning techniques or reinforced with reinforcing steel. Accordingly, the resulting structure includes a concrete floor strengthened by 2-way tensioned or reinforced beams.
The precast concrete floor slabs 10, 12, 14, 16 each have at least one upstanding support member attached to them, where that upstanding support member is a permanent or temporary support with which, or on which, a further storey (usually another building module with a concrete slab) can be installed above the lower concrete floor slab to thereby construct a multi-storey building.
For example, referring to
The precast concrete floor slabs may be described as being provided with a wall structure. It is envisaged that the wall structure could be an internal wall, a façade wall, or a structure to allow creation of a wall (such as shutters for pouring or spraying concrete walls). As shown in
As an alternative to using temporary vertical/upright supports the wall structure itself on the precast concrete floor slab may form the upstanding support member providing the vertical support required to support a concrete floor slab of a storey above, or indeed to support multiple storeys above. Further still, a combination of temporary and permanent upstanding supports could be incorporated onto the concrete wall slab, as described with the facade embodiment above.
Referring to
In the embodiments illustrated, the precast concrete slabs each have precast beams integrally formed into the precast concrete slabs 10, 12, 14, 16. Precast concrete slab 10 has two precast beams 32, 34. Precast concrete slab 12 has two precast beams 33, 35. Precast concrete slab 14 has one precast beam 3632, 34. Precast concrete slab 16 has one precast beam 37. The integrally formed beams 32, 33, 34, 35, 36, 37 extend downwards from the precast concrete slabs 10, 12, 14, 16. The integrally formed beams are structural beams engineered to support the load of the building structure once constructed.
The term building module is intended to refer to a modular construction or building unit that is created off site, for example in a factory setting, and is transported on site to be assembled with other building modules to construct a multi-storey building. The building module could be provided in a basic form comprising a base and a frame, or facade, fixed to the base that forms the ‘bones’ of walls and a ceiling. Alternatively, the building module may comprise a building unit in an almost finished state including base, walls, ceiling and even fixtures. Logically, the building module may include a construction manufactured to a state between the basic and the almost finished forms discussed above.
Further information regarding methods for installing a building module above an existing building module (e.g. by using temporary support members) can be found in co-pending International Patent Application no. PCT/AU2017/050064 titled “METHODS AND APPARATUS FOR CONSTRUCTING MULTI-STOREY BUILDINGS”, which also claims priority from Australian provisional application no. 2016902460 filed on 23 Jun. 2016 titled “METHODS AND APPARATUS FOR CONSTRUCTING BUILDINGS”, and from Australian provisional application no. 2016903025 filed on 1 Aug. 2016 and titled “METHOD FOR CONSTRUCTING A CONCRETE FLOOR IN A MULTISTOREY BUILDING”. The description and teachings of that co-pending international patent application is incorporated herein by reference to save reproducing that entire description herein.
Referring to
It is, however, understood that the method of construction does not necessarily require the precast floor slabs to include integrally poured beams. The slabs may instead be planar and arranged to be stitched, ie. connected, to other slabs that may or may not have integrally formed beams in order to provide a strong concrete floor constructed from a series of interconnected precast concrete floor slabs.
An advantage of forming a finished concrete floor from precast floor slabs connected through wet joints is that a large portion of the work in making the floor, which in a preferred embodiment forms part of a more complex modular building unit, can be carried out in a controlled factory setting. Furthermore, prefabricating certain components of the build should increase the efficiency and speed of the build.
In the presently described example, a multistorey building using modular building units can be built faster than with known systems because the modular units can be assembled one atop the other without waiting for each floor to be completed first. Accordingly, and by way of example, five levels of building units could be assembled in two days while in that same amount of time two floors of the five levels may be finished by connecting the floor slabs together through wet joints. The method allows the construction of the building to be decoupled from the more time consuming task of pouring concrete and allowing it to dry.
For example, as already described above, during multistorey construction a precast concrete floor slab in a building unit will be installed above the first precast concrete floor slab 10. The upper building unit will be installed on top of and supported by the upstanding support members (e.g. the temporary support members 103 in some instances or permanent wall/facade structures or columns in other instances, or a combination of both) provided on the first, lower precast concrete floor slab 10. The installation of the upper precast concrete floor slab above the lower precast concrete floor slab 10 can be carried out before the concrete beams 13, 15 are poured. In this way the pouring of the concrete beams 13, 15 is decoupled from the installation of the precast concrete floor slabs, as the upstanding support members are capable of fully supporting the next level of the construction, and indeed are capable of supporting multiple upper levels (eg. 5 levels) of construction.
The building modules 20, 22, 24, 26 in a preferred embodiment comprise the precast concrete floor slabs 10, 12, 14, 16 and upright supports in the form of a facade 21, internal wall structure and/or temporary supports 103. The building modules could also include location devices that guide and correctly locate for attaching an upper module in the correct position above a lower module. As shown in co-pending International Patent Application no. PCT/AU2017/050064 the location device may be a cone-shaped locator pin provided on the upright support (which is a temporary tripod support in the embodiment of that co-pending application) that acts as a dowel and is adapted to locate into a corresponding recess in an underside of the floor slab or side attachment (such as a facade) of the building module to be mounted above. Accordingly, building modules can be correctly positioned one above the other in the desired storey configuration without requiring any concrete work to be first completed.
Turning back to
Although the beams have been shown as positioned at a perimeter of the slab 10, it is envisaged that the beams could be offset from the perimeter. In other words, the beams may be inset from a perimeter of the slab. In addition, although the beams have been shown as positioned parallel to either the short or long edge of the slab of a module, it is envisaged that the beams could be positioned at an angle relative to the short or long edges of the slab.
Referring again to
The supporting formwork could be provided as a separate structure, such as the sacrificial or removable formwork 23 as shown in
Concrete is poured into the channel 28 created by the formwork 23 to form a continuous concrete floor between the precast concrete floor slabs or, as shown in the embodiments of the drawings, concrete is poured to form beam 13 between the first precast concrete slab 10 and the second precast concrete slab 12. Whether or not a beam is formed, the result is a continuous floor slab 17 of a building 100. The concrete is poured to be level with a top surface of the first and second precast concrete floor slabs 10, 12. In other words, the poured concrete does not form a topping slab that overlays the first and second precast concrete floor slabs 10, 12 (although this may be performed if desired). The poured concrete beam 13 is angled relative to the integrally formed beam 32 in the first precast concrete slab 10, thereby forming a two-way tensioned or reinforced slab. In particular, the poured concrete beam 13 is perpendicular to integrally formed beam 32.
An alternative embodiment but with similar effect is illustrated in
Referring back to
Once the poured beams 13, 15 set precast beams 34 and 37 in precast slabs 10 and 16 form a single continuous beam, precast beams 32 and 33 in precast slabs 10 and 12 form a single continuous beam, and precast beams 35 and 36 in precast slabs 12 and 14 form a single continuous beam. This results in the completed floor slab 17 having five beams in total, as shown in
While it is preferable for the poured beams 13, 15 and the integrally formed beams 32, 33, 34, 35, 36, 37 to have substantially the same thickness, it is envisaged that the poured beams 13, 15 could be thicker than the integrally formed beams 32, 33, 34, 35, 36, 37, or that the integrally formed beams 32, 33, 34, 35, 36, 37 could be thicker than the poured beams 13, 15.
The precast beams are cast with reinforcement tie bars 27 protruding from their side edges that are embedded into the wet in situ joint and assist in tying the precast slabs to the poured connections. The tie bars may be in the form of reinforcement bar, or steel angle cast along the edge of a floor slab.
It is envisaged that the building module 20, or the precast concrete slab 10 on its own, could be constructed at a first location, and then moved, for example by being transported from the first location to an installation location, where the building module is installed. The first location may be a factory or a warehouse where the initial components of the first building module 20 may be more easily assembled in an assembly line fashion, in order to assist in shortening overall construction time.
Alternatively, if there is room on the building site, an assembly area may be located, for example, in an area that is designated as a courtyard in the finished building. In this example the first building module 20, or the precast concrete slab 10 on its own, can be constructed on the building site in a designated assembly area before being moved into position, for example by a crane, and installed. It will be understood that locating the assembly area, or factory, on the building site will help reduce transportation costs.
It will be understood that by installing the temporary support members 103 and the façade 21 before the precast concrete floor slabs are moved into the installation position the building site can operate with increased safety. This is because the installation of the outer walls removes the live edge of the building site, thereby eliminating a live edge for workers to fall from. In addition, by removing the live edge the construction process also becomes more efficient as there is no need for external barriers to be installed around the building before workers can enter the worksite.
While the precast concrete slabs 10, 12, 14, 16 are described above as being connected by pouring concrete 11 between the modules, additional steps can be used to further increase the strength of the finished slab 17. Specifically, strengthening can be achieved by use of reinforcement bars or mesh in the wet joint and/or post-tensioning the finished, continuous wet joint/precast combination floor.
Referring now to
The bores 42, 52 in the first and second precast slabs 40, 50 can be formed using any suitable method. For example, the bores 42, 52 may be formed when casting the precast slabs 40, 50. For example, a conduit (not shown) may be placed in a mould for the precast slab 40 and concrete poured around the conduit so that the conduit is embedded in the precast slab 40, thereby forming a bore in the precast slab 40.
During installation of the precast slabs 40, 50 the first precast slab 40 is installed first. The second precast slab 50 is installed adjacent and spaced from the first precast slab. As shown in
A conduit 62 is installed in the formwork between the bore 42 in the first precast concrete slab 40 and the bore 52 in the second precast concrete slab 50 to extend the tensioning passage 64 through both the first and second precast concrete slabs 40, 50. Specifically, the conduit 62 is connected to the bore 42 in the first module 40 and the bore 52 in the second module 50, thereby forming a continuous tensioning passage 64 from one end of the first precast slab 40 to the opposite end of the second precast slab 50.
In other words, the tensioning passage 64 extends the entire way through both the first precast slab 40 and the second precast slab 50, allowing a cable to be fed through the tensioning passage 64 such that the cable extends out of an end of the first precast slab 40, and extends out of an end of the second precast slab 50. The conduit 62 is connected to the bores 42, 52 to form a seal. The seal is fluid tight and prevents the ingress of concrete into the tensioning passage 64.
The tensioning passage may be formed in a draped profile, undulating between slabs and at the outer facade edge of the building (as shown in
Concrete 60 is poured to connect the first and second precast slabs 40, 50, forming a slab of a building 70. The concrete surrounds the conduit 62, thereby embedding the conduit 62 in the poured concrete 60 as well as the in situ bars protruding from the side edges of the precast floor slabs.
Once the concrete 60 has set a tendon or cable (not shown) is fed through the tensioning passage 64 and the cable is tensioned. Tensioning of the cable applies a compressive force to the first precast slab 40, the second precast slab 50, and the concrete 60 connecting first and second precast slabs 40, 50. Tensioning the completed slab 70 acts to strengthen the slab, allowing it to support more weight.
The tensioning process involves fixing one end, the dead end, of the cable using an anchor (not shown) and then pulling the opposite, live end of the cable using a winch or stressing jack. As shown in
Once the slab has been tensioned to stress the concrete floor under the desired compression the live cable ends are tied and/or grout tube containing the cable is filled with high strength grout under pressure to fix the cable in tension.
While the tensioning passage 64 has been described as a single passage in a single direction, it is envisaged that there could be multiple bores in a single precast concrete slab that are used to form multiple tensioning passages. These bores could be substantially parallel to each other to provide tensioning in a single direction, or they could be angled to one and other, for example perpendicular and overlapping, in order to provide tensioning in two or more directions. Referring to
Referring to
Referring to
It will be understood that the method of post-tensioning two precast concrete slabs can be used on its own, or in combination with the method of forming a slab using precast concrete slabs with integrally formed beams. In other words, while the connection to form a post-tensioned slab has been described with reference to modules having one or more precast beams, it will be understood that the method of connecting modules to form a slab could be applied to modules without precast beams.
It is also understood that steel reinforcement bars and/or mesh can be used in place of post-tensioning in order to strengthen the completed floor including the in situ connection between precast floor slabs.
In addition, as described above with reference to the precast concrete slabs 10, 12, 14, 16, the first and second precast concrete slabs 40, 50 may form the base of a building module for a modular building. The first and second precast concrete slabs 40, 50, or any building modules using the first and second precast concrete slabs 40, 50 to form the base of the building module, may be made offsite, as described above with reference to precast concrete slabs 10, 12, 14, 16 and building modules 20, 22, 24, 26.
Referring to
The bed/table has recesses or voids that result in the precast concrete slab 10 being thicker in these areas. These areas of greater thickness form the integrally formed precast beams 32, 34 when the concrete has set. The recesses or voids are perpendicular, resulting in perpendicular beams 32, 34.
Once the table has been prepared concrete is poured to form a precast concrete slab 10 that forms a floor of a building module 20. This process embeds the conduits and/or reinforcement bar into the precast concrete slab 10 and creates beams that are integrally formed with the precast concrete slab 10. The steel beams are also partially embedded in the concrete slab, which add rigidity to the precast concrete slab 10.
Once the concrete slab has set the precast concrete slab 10 is removed from the construction bed/table. The precast concrete slab 10 is used to form a building module for a modular building. This can involve installing support structures, walls, fixtures and fittings, as desired.
Once the building module has been completed to the desired state the first building module 20 is transported from the warehouse to an installation location, such as a building site. The first building module 20 is then installed at the building site (either on the ground floor or above another building module already installed.
Aside from the ground level modules, installation will involve the building modules being craned and assembled in storeys, with the precast floor slabs of each module suspended above the floor below.
Once the first building module 20 has been installed a second building module 22 is installed spaced adjacent to the first building module. The second building module 22 is manufactured and assembled in warehouse in a similar way to the first building module 20. The second building module 22 also has precast concrete beams 33, 35 and bores for tensioning cables. The second building module 22 is positioned so that the integrally formed beam 33 in the second precast concrete slab 12 is parallel and in the same plane as the integrally formed beam 32 in the first precast concrete slab 10. The second building module 22 is also positioned so that at least one bore in the second precast concrete slab 12 is aligned, and in the same plane as, at least one bore in the first precast concrete slab 10.
Once the first and second building modules 20, 22 have been installed formwork is either erected in the space between the modules 20 and 22, or is already provided as an integrally extending flange of the module. In the embodiment illustrated in
If using post-tensioning, a conduit is installed between the aligned bores in the first and second precast concrete slabs 10, 12 to form a tensioning passage that extends through both the first and second precast concrete slabs 10, 12.
A concrete beam, or simple connection, is then poured between the first and second precast concrete slabs 10, 12 to connect the first and second precast slabs 10, 12. This process forms a completed slab. The poured concrete beam surrounds the conduit connecting the aligned bores, thereby embedding the conduit in the poured beam. Once the poured beam sets the precast beams 32 and 33 form a single continuous beam. The poured beam is perpendicular to the continuous beam (made from the precast beams 32 and 33) that it creates.
Once the concrete beam has set four tensioning cables are fed through the tensioning passage so that the cables extend out of the first precast concrete slab and the second precast concrete slab. The end of the cables that extend from the second pre-cast slab 12 are fixed to the second pre-cast slab 12. The ends of the cables that extend from the first pre-cast slab 10 extend into the stressing pocket in the first precast slab 10. A stressing jack is used to tension the cables. Once the cables have been tensioned excess cable is cut off and the stressing pocket in the first precast slab 10 is filled with concrete to form a flat upper surface and to hide the cables.
While feeding the cable through the tensioning passage has been described as occurring after the concrete beam has been poured and has set, it is envisaged that the cable could be fed through the tensioning passage any time after the conduit between the aligned bores has been installed.
While the methods above have only been discussed in relation to two slabs connected side-by-side, or four slabs in a 2×2 configuration, it is envisaged that multiple other configurations could also be created. For example, the slabs may be configured in a 2×1 configuration, a 2×3 configuration, a 2×4 configuration, a 3×4 configuration etc. For example,
Precast slab 240 has a precast beam 241. The three precast slabs 240, 250, 270 are connected together by poured concrete beams 260, 280. The precast slab 240 has a plurality of bores 242 for receiving a tensioning cable. Precast slab 270 is connected to a precast outer wall 280.
As shown in
The method described herein may also include vertically inserting a pre-fabricated concrete wall panel in between the adjacently spaced precast floor slabs.
Pre-fabricated wall panels are also described in the abovementioned co-pending International Patent Application titled “METHODS AND APPARATUS FOR CONSTRUCTING MULTI-STOREY BUILDINGS”, and which also claims priority from Australian provisional application no. 2016902460 filed on 23 Jun. 2016, and from Australian provisional application no. 2016903025 filed on 1 Aug. 2016 and titled “METHOD FOR CONSTRUCTING A CONCRETE FLOOR IN A MULTISTOREY BUILDING”.
The wall panel can be lowered in position by crane and forms structural support for the building. The wall panels are tied at an upper end to the precast floor slabs and formwork provided around the wall panel and between the floor slabs, as required, along the length of the upper end of the wall panel. Concrete can then be poured into the formwork to form a wet joint to finish the floor and incorporating the wall panel on an underside of the floor including any tie bars.
It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.
In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2016902460 | Jun 2016 | AU | national |
2016903025 | Aug 2016 | AU | national |
PCT/AU2017/050063 | Jan 2017 | WO | international |
PCT/AU2017/050064 | Jan 2017 | WO | international |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU2017/050546 | 6/5/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/219069 | 12/28/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3300943 | Owens | Jan 1967 | A |
3568380 | Stucky | Mar 1971 | A |
3613325 | Yee | Oct 1971 | A |
3918222 | Bahramian | Nov 1975 | A |
4023315 | Stucky | May 1977 | A |
4147009 | Watry | Apr 1979 | A |
4221098 | Mayer et al. | Sep 1980 | A |
4435927 | Umezu et al. | Mar 1984 | A |
4443985 | Moreno | Apr 1984 | A |
4470227 | Bigelow, Jr. et al. | Sep 1984 | A |
4546530 | Rizk | Oct 1985 | A |
5224321 | Fearn | Jul 1993 | A |
6223480 | Khoo | May 2001 | B1 |
6625943 | Renner | Sep 2003 | B1 |
6651393 | Don et al. | Nov 2003 | B2 |
7581709 | Gillespie et al. | Sep 2009 | B2 |
8291675 | Tikhovskiy | Oct 2012 | B2 |
8336276 | Tikhovskiy | Dec 2012 | B2 |
9371648 | Tikhovskiy | Jun 2016 | B1 |
9487943 | Bui | Nov 2016 | B2 |
10066390 | Pospisil et al. | Sep 2018 | B2 |
10260224 | Jazzar | Apr 2019 | B1 |
10501948 | Lizarazu Zaldua et al. | Dec 2019 | B2 |
20120167502 | Tikhovskiy | Jul 2012 | A1 |
20130055671 | Bruce | Mar 2013 | A1 |
20130305629 | Stephenson et al. | Nov 2013 | A1 |
20140298745 | Rechenmacher | Oct 2014 | A1 |
20150308096 | Merhi | Oct 2015 | A1 |
20160251853 | Rubel et al. | Sep 2016 | A1 |
20210376261 | Boudreault et al. | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
933376 | Sep 1973 | CA |
110439259 | Nov 2019 | CN |
102016012237 | Jul 2018 | DE |
1184521 | Mar 2002 | EP |
2901820 | Dec 2007 | FR |
1101597 | Jan 1968 | GB |
1271024 | Apr 1972 | GB |
1350599 | Apr 1974 | GB |
100873846 | Dec 2008 | KR |
20130083100 | Jul 2013 | KR |
2376424 | Dec 2009 | RU |
2005108700 | Nov 2005 | WO |
2011106842 | Sep 2011 | WO |
2012045149 | Apr 2012 | WO |
2012070281 | May 2012 | WO |
2017093221 | Jun 2017 | WO |
2019034279 | Feb 2019 | WO |
Entry |
---|
International Search Report for Application No. PCT/AU2017/050546 dated Sep. 29, 2017 (5 pages). |
International Search Report for Application No. PCT/AU2017/050064 dated Jun. 30, 2017 (5 pages). |
International Search Report for Application No. PCT/AU2017/050063 dated May 4, 2017 (5 pages). |
International Preliminary Report on Patentability for related Application No. PCT/AU2017/050064 dated Oct. 22, 2018 (85 Pages). |
Office Action issued from the European Patent office for related Application No. 17814314.5 dated Jul. 22, 2021 (5 Pages). |
Examination Report issued from the Australian Patent Office for related Application No. 2017282720 dated Dec. 13, 2021 (5 Pages). |
Examination Report issued from the Australian Patent Office for related Application No. 2017280086 dated Dec. 21, 2021 (4 Pages). |
Number | Date | Country | |
---|---|---|---|
20190136507 A1 | May 2019 | US |