1. Field of the Invention
This invention relates generally to mechanically stabilized embankment systems, and more particularly to a method for constructing a mechanically stabilized earthen embankment using semi-extensible steel soil reinforcements.
2. Description of Related Art
The prior art teaches various forms of mechanically stabilized embankment systems for stabilizing earthen embankments. These systems include a wall facing element connected to elongate soil reinforcement elements that extend into the earthen embankment. The prior art elongate soil reinforcement elements fall into three categories: (1) extensible reinforcements made of plastic or other material that stretch under pressure, (2) non-extensible rods made of steel or the like that have a deformable region in a proximal portion of the rod adjacent the wall facing element, to accommodate some relative movement between the rods and the wall facing element (e.g., in the event of an earthquake), and (3) non-extensible rods that are bent in various manners for the purpose of anchoring the rod in the earthen embankment.
In the first category, extensible plastic reinforcements are effective in accommodating movement of the earthen embankment along the entire length of the plastic reinforcements. The disadvantage of such systems is that the reinforcements are completely extensible, and there is nothing to limit the stretching of the reinforcements. Stretching the reinforcements weakens them and may cause movement of the face and failure of the system.
In the second category, non-extensible steel rods with deformable sections adjacent the wall facing element are useful in mitigating damage from earthquakes and some movement of the rods immediately adjacent the wall facing element, while still maintain support for the wall facing. Munster, U.S. Pat. No. 1,762,343, for example, teaches a system wherein the anchor elements are slidably attached to the retaining wall. Hilfiker, U.S. Pat. No. 4,343,572, teaches a system wherein the anchor elements include deformable sections adjacent the wall facing, so that the anchor element may move with the embankment in the event of an earthquake or other form of movement adjacent the wall facing. While the steel rods of this second category function to deform under the stresses adjacent the wall, they are not able to accommodate stresses placed upon the rods inside the earthen embankment. Since the rods are not extensible within the earthen embankment, they must be made with sufficiently steel to prevent failure within the earthen embankment, this driving up the costs of the system.
There are several prior art references that teach steel rods, straps, and the like, that include bent portions to provide limited extensibility. Most pertinent of these references, Brown, U.S. Pat. No. 7,270,502, teaches steel reinforcing straps (or rods) that are corrugated, having bent sections along the entire length of the straps. The corrugated structure of the straps is intended to provide pull out resistance, and also semi-extensibility; however, it is difficult to limit the extensibility of the straps, since the entire length of the strap is subject to being pulled straight. Sufficient force exerted on the straps tends to cause too much extension, which can lead to failure of the wall facing. Furthermore, as the bent segments are straightened under the stress, the straps lose pull out resistance, further compounding the problem.
Other references teach steel reinforcement rods having a bent “swiggle” anchor at the distal portion opposite the wall. The “swiggle” anchor functions to anchor the rods more firmly in the earthen embankment. An example of such a construction is shown in Hilfiker, U.S. Pat. No. 4,834,584. However, this form of “swiggle” anchor is unable to accommodate movement within the earthen structure.
Other prior art patents of interest include Hilfiker, U.S. Pat. No. 7,073,983, Hilfiker, U.S. Pat. No. 4,929,125, Hilfiker, U.S. Pat. No. 4,993,879. All of the above-described references are hereby incorporated by reference in full.
The prior art teaches extensible plastic reinforcements. The prior art also teaches the use of non-extensible steel rods that include deformable, bent portions, at either the proximal or distal portions, or along the entire length of the rods. However, the prior art does not teach elongate soil reinforcement elements that only include having bent sections at the location of maximum force. Such “semi-extensible” elements enable limited movement within the earthen embankment adjacent the location of maximum force, as described below, without weakening the elongate soil reinforcement elements and without providing too much extension that could lead to the failure of the wall facing. The present invention fulfills these needs and provides further related advantages as described in the following summary.
The present invention teaches certain benefits in construction and use which give rise to the objectives described below.
The present invention provides a method for constructing a mechanically stabilized earthen embankment has the steps of constructing a wall facing element, and determining a plane of maximum force and a zone of maximum force in the earthen embankment to be formed. A plurality of elongate soil reinforcement elements are bent to form semi-extensible bent segments, but such that proximal and distal portions remain substantially straight and inextensible. The elongate soil reinforcement elements are positioned such that the semi-extensible region is within the zone of maximum force, and the proximal ends are connected to the wall facing element. Fill soil is added to build the earthen embankment, and the process is repeated until the earthen embankment is formed.
A primary objective of the present invention is to provide a method for constructing a mechanically stabilized embankment system having advantages not taught by the prior art.
Another objective is to provide a method for constructing a mechanically stabilized embankment system that includes an elongate soil reinforcement element having a plurality of semi-extensible bent segments formed in a middle portion of the elongate soil reinforcement element, where maximum force occurs, but which are substantially straight and inextensible at proximal and distal ends, to prevent excessive extensibility.
Another objective is to provide a method for constructing a mechanically stabilized embankment system that includes a elongate soil reinforcement element that is semi-extensible and may extend a certain distance to accommodate a controlled movement within the earthen structure, but then becomes non-extensible and is not weakened by over-extension.
A further objective is to provide a method for constructing a mechanically stabilized embankment system that allows sufficient movement within an earthen structure so that it may move to the “active” condition, thereby stabilizing the earthen structure and reducing the strain on the elongate soil reinforcement elements.
A further objective is to provide a method of construction that enables the use of lower strength soil reinforcement elements, thereby reducing costs without sacrificing the integrity of the earthen structure.
Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
The accompanying drawings illustrate the present invention. In such drawings:
The above-described drawing figures illustrate the invention, a method for constructing a mechanically stabilized embankment system 10. The mechanically stabilized embankment system 10 includes an elongate soil reinforcement element 30 having a plurality of semi-extensible bent segments 48. The system 10 may further include a means for securing the elongate soil reinforcement element 30 to a wall facing element 12, such as a connection element 20 for connecting the soil reinforcement element 30 to the wall facing element 12.
The elongate soil reinforcement element 30 includes a proximal end 33, a distal end 34, a length, L1, a proximal portion 36, a middle portion 37, and a distal portion 42. The semi-extensible bent segments 48 of the middle portion 37 enable the middle portion 37, which is subjected to the maximum stresses, to extend a limited amount under strain. This limited “semi-extensible” movement allows the backfill soil of the earthen embankment 15 to go into the active condition, thereby reducing the strain on the elongate soil reinforcement elements 30, without weakening the final strength of the soil reinforcement element 30. Furthermore, the proximal portion 36 and distal portion 42 are straight, do not include the semi-extensible bent segments 48, and are therefore inextensible. Since most of the elongate soil reinforcement elements 30 are inextensible, the elongate soil reinforcement elements 30 do not lengthen enough under strain to allow the wall facing element 12 to move or fail. Also, the proximal portion 36 of the elongate soil reinforcement element 30 extends at least 0.9144 meters (3.0 feet) from the proximal end 33 of the elongate soil reinforcement element 30 and the distal portion 42 of the elongate soil reinforcement element 30 extends at least 0.9144 meters (3.0 feet) from the distal end 34 of the elongate soil reinforcement element 30. The length L1 of the elongate soil reinforcement element 30 may be determined by one skilled in the art, and vary according the application.
Each of the elongate soil reinforcement elements 30 may have two or more of the semi-extensible bent segments 48, the semi-extensible bent segments 48 forming a semi-extensible region SE, but wherein the proximal portion 36 of the elongate soil reinforcing elements 30 adjacent the proximal end 33, and the distal portion 42 adjacent the distal end 34, remain substantially straight and inextensible. The semi-extensible region SE is defined as being the region bounded by the outermost endpoints of the semi-extensible bent segments 48 as taken along the elongate soil reinforcement element 30.
As illustrated in
The first interlocking element 24 is adapted for receiving and lockingly engaging the soil reinforcement element 30. In the embodiment of
In the embodiment of
In one embodiment, the elongate soil reinforcement element 30 is made of a “non-extensible” material such as steel, aluminum, or other suitable material, such as is known to those skilled in the art (see American Association of State Highway and Transportation Officials (AASHTO) guidelines and standards). “Semi-extensible” elements are constructed of non-extensible materials but are physically bent to provide a measure of extensibility despite the non-extensible nature of the underlying material. These materials are used in preference to “extensible” materials such as plastics, which suffer disadvantages described above.
In one embodiment, the semi-extensible bent segments 48 may be generally V-shaped or Z-shaped elements. In alternative embodiments, some of which are discussed below, the semi-extensible bent segments 48 may have other shapes (e.g., C-shaped, or any other shape that provides for semi-extensibility), and may be formed in any suitable number and position as may be selected by one skilled in the art. The semi-extensible bent segments 48 are integrally formed by and spaced on the middle portion 37 of the elongate soil reinforcement element 30 such that each semi-extensible bent segments 48 extend laterally from the axis A, but can be pulled straight upon the application of excessive force that might otherwise break the elongate soil reinforcement element 30.
For purposes of this application, the term “soil reinforcement element” is hereby defined to include any form of elongate rod, strap, screw, bar, shaft, mesh, grid, and/or other similar and/or equivalent structure. The reinforcement element 30 may have an axis, which is hereby defined to include any form of general line adapted to bear the strain of supporting the wall facing element 12 against the weight of the earthen embankment.
The proximal portion 36 of the elongate soil reinforcement element 30 includes a second interlocking element 46 adapted to lockingly engage the first interlocking element 24 of the connection bracket 20. In the present embodiment, a second interlocking element 46 includes a pair of outwardly extending posts that are generally perpendicular to the axis A of the elongate soil reinforcement element 30. The posts 46 may be inserted into the rectangular slot 24, as illustrated in
While some additional embodiments of the first and second interlocking elements 24 and 46 are discussed in greater detail below, any form of interlocking known in the art, or devisable by one skilled in the art consistent with the present invention, should be considered within the scope of the present invention.
As discussed above, the semi-extensible bent segments 48 enable the soil reinforcement element 30 to not only provide pull-out resistance, but to also withstand greater strains and/or deformations within the earthen embankment without breaking. When the earthen embankment exerts a strain against the elongate soil reinforcement element 30, or when the earthen embankment deforms the elongate soil reinforcement element 30 in other ways (e.g., shifting soil, or other conditions), the semi-extensible bent segments 48 enable the element 30 to extend somewhat before breaking. Obviously, those skilled in the art may devise many alternative shapes and embodiments of the semi-extensible bent segments 48 (some of which are discussed in greater detail below), and such alternatives should be considered within the scope of the claimed invention. The distal portion 42 is typically without any form of anchor or similar feature.
As illustrated in
As illustrated in
Also illustrated in
The wire elements 132A and 132B are connected together with welds 138 or similar or equivalent connection means, as illustrated in
As illustrated in
Also illustrated in
As illustrated in
In the embodiment of
In the embodiment of
In the embodiment of
The elongate soil reinforcement elements 30 are each positioned adjacent the wall facing element 12 such that the elongate soil reinforcement elements 30 extend into the location 16 of the earthen embankment 15. The proximal portions 36 of each of the plurality of elongate soil reinforcement elements 30 are attached to the wall facing element 12. Fill soil 17 is then added to the location 16 to build the earthen embankment 15 over the plurality of elongate soil reinforcement elements 30.
Constructed in this manner, stress in the fill soil 17 will create sufficient force to straighten some of the plurality of semi-extensible bent segments 48 in the middle portions 37 of the plurality of elongate soil reinforcement elements 30, allowing the earthen embankment 15 to move to an active condition thereby reducing the stress on the soil reinforcement elements 30. Once this movement has occurred, the elongate soil reinforcement elements 30 become non-extensible, so further movement, sagging, weakening, etc., can occur. For purposes of this application, the term “earthen embankment” is hereby defined to include any form of earthen formation that is to be stabilized consistent with the present description.
As more fully described in the discussion of
In one embodiment, the plurality of elongate soil reinforcement elements 30 may each be about 3 m. (10 ft.) long and may have two of the semi-extensible bent segments 48 spaced about 0.61 m. (2 ft.) apart making the semi-extensible region SE about 0.61 m. (2 ft.) long.
In another embodiment, the plurality of elongate soil reinforcement elements 30 may each be between about 4.6-6.1 m. (15-20 ft.) long and may have three of the semi-extensible bent segments 48 spaced about 0.61 m. (2 ft.) apart making the semi-extensible region SE about 1.2 m. (4 ft.) long.
There is also the zone of maximum force Z1, which includes the plane of maximum force 124. In one embodiment, the zone of maximum force Z1 extends on either side of the plane of maximum force 124 a total depth that is between 5-35% of the length of the plurality of elongate soil reinforcement elements 30. In another embodiment, the zone of maximum force Z1 is defined to extend in both directions along the elongate soil reinforcement element 30 a distance no greater than 20% of the total length of the elongate soil reinforcement element 30. In yet another embodiment, the zone of maximum force Z1 is defined to extend perpendicularly to the plane of maximum force 124, on one side, a distance of 20% of the distance between the plane of maximum force 124 and the proximal end 33 (shown in
As shown in
The elongate soil reinforcement element 30 must be constructed of steel (or other suitable material) that is strong enough to withstand this peak force 125. As the elongate soil reinforcement elements 30 deform and extend, this has the effect of reducing the force in and about the semi-extensible region SE. This is shown by the dashed line indicating a second instance 122, where the tension profile has been flattened by the action in the semi-extensible region SE. This enables the backfill of the earthen embankment to go into “active” condition, and resist movement, thereby reducing the strain on the soil reinforcement elements. This reduced strain enables the use of soil reinforcement elements 30 that are lighter and require less steel.
The semi-extensible nature of the reinforcements utilized in the present application will result in the ability to utilize much less steel in the construction of the reinforcing elements 30, and thereby reduce the costs of the embankment system 10, without the disadvantages of other prior art systems that are fully extensible.
The above described elements allow a method for constructing a mechanically stabilized earthen embankment in a location by first positioning the plurality of the elongate soil reinforcement elements 30 with the proximal ends 33 adjacent the wall facing element 12 such that the elongate soil reinforcement elements 30 extend into the location of the earthen embankment 15 and such that the semi-extensible region SE is within the zone of maximum force Z1. Connecting the proximal end 33 of each of the plurality of elongate soil reinforcement elements 30 to the wall facing element 12. Adding fill soil 17 to the location to build the earthen embankment 15 over the plurality of elongate soil reinforcement elements 30. Repeating the steps of positioning more of the plurality of elongate soil reinforcement elements 30, connecting them to the wall facing elements 12, and adding fill soil 17, until the mechanically stabilized earthen embankment 15 has been completed, and such that stress in the fill soil 17 creates sufficient force to straighten some of the plurality of semi-extensible bent segments 48, allowing the earthen embankment 15 to move to an active condition thereby reducing the stress on the soil reinforcement elements 30.
As used in this application, the words “a,” “an,” and “one” are defined to include one or more of the referenced item unless specifically stated otherwise. Also, the terms “have,” “include,” “contain,” and similar terms are defined to mean “comprising” unless specifically stated otherwise. Furthermore, the terminology used in the specification provided above is hereby defined to include similar and/or equivalent terms, and/or alternative embodiments that would be considered obvious to one skilled in the art given the teachings of the present patent application. While some representative embodiments of the anchor system 10 are illustrated herein, the scope of the present invention should not be limited to these embodiments, but should include any alternative embodiments, constructions, and/or equivalent embodiments that might be devised by those skilled in the art.
This application for a utility patent is a further continuation-in-part of previously filed patent Ser. No. 12/819,893, filed Jun. 21, 2010, which was a continuation-in-part of a previously filed utility patent, now abandoned, having the application Ser. No. 12/467,158, filed May 15, 2009. This application also claims the benefit of U.S. Provisional Application No. 61/054,012, filed May 16, 2008.
Number | Name | Date | Kind |
---|---|---|---|
1762343 | Munster | Jun 1930 | A |
3922864 | Hilfiker | Dec 1975 | A |
4343572 | Hilfiker | Aug 1982 | A |
4407611 | Murray et al. | Oct 1983 | A |
4798499 | Yamada | Jan 1989 | A |
4834584 | Hilfiker | May 1989 | A |
4929125 | Hilfiker | May 1990 | A |
4993879 | Hilfiker | Feb 1991 | A |
5044833 | Wilfiker | Sep 1991 | A |
6086288 | Ruel et al. | Jul 2000 | A |
6371699 | Weinreb | Apr 2002 | B1 |
6517293 | Taylor et al. | Feb 2003 | B2 |
7073983 | Hilfiker | Jul 2006 | B2 |
7270502 | Brown | Sep 2007 | B2 |
20070014638 | Brown | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
61242225 | Oct 1986 | JP |
63284321 | Nov 1988 | JP |
Number | Date | Country | |
---|---|---|---|
20140105693 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61054012 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12819893 | Jun 2010 | US |
Child | 14107548 | US | |
Parent | 12467158 | May 2009 | US |
Child | 12819893 | US |