The present invention relates to a method for constructing a cylindrical tank.
Cylindrical tanks with a structure having an inner tank and an outer tank are being used to store cryogenic liquids such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), and the like. Patent Document 1 discloses a method for constructing a cylindrical tank having a metallic inner tank and an outer tank that is made of precast (PC) concrete.
In the method for constructing a cylindrical tank, PC sidewalls that will form an outer tank are stood from a base portion that is formed of concrete, a roof that has been assembled on the base portion is air-raised, and an outer tank roof is mounted on a top portion of the PC walls. Then, an annular portion is laid on the base portion, and then an inner tank is set up on the annular portion. The inner tank is assembled by welding a plurality of inner tank lateral plates which are carried in from a construction site entrance of the PC walls in a circular shape, and then welding the inner tank lateral plates from a lowermost level to an uppermost level in order. Then, by laying a cold insulation material on the base portion and filling an inner-outer-tank gap with another cold insulation material, a cylindrical tank that has a function of keeping LNG and the like cool is constructed.
[Patent Document 1]
Japanese Unexamined Patent Application, First Publication No. 2004-353319
In recent years, however, there has been a demand for a shortened construction period for such a cylindrical tank. In the related art described above, after the sidewalls of the outer tank are set up, the outer tank roof is mounted on the sidewalls of the outer tank through air-raising, and then the inner tank is set up. For this reason, all of the respective work becomes a critical path, and thus it is not possible to satisfactorily achieve shortening of the construction period of the cylindrical tank.
The present invention takes the above-described problem into consideration, and thus aims to provide a method for constructing a cylindrical tank that can achieve shortening of a construction period.
In order to achieve the aforementioned object, according to a first aspect of the present invention, a method for constructing a cylindrical tank which has a metallic inner tank and a concrete outer tank includes a step of building up a sidewall of the outer tank in an outer circumferential edge portion of a base portion of the outer tank, a step of assembling a roof portion of the outer tank on the base portion of the outer tank other than the outer circumferential edge portion, a step of lifting the roof portion of the outer tank which is on the base portion of the outer tank using a jack-up unit while the sidewall of the outer tank is being built up and then holding the roof portion on the sidewall of the outer tank, and a step of assembling the inner tank independently of the roof portion of the outer tank in a space under the roof portion of the outer tank which is created due to the lifting.
According to the first aspect of the present invention, the sidewall of the outer tank is built up in the outer circumferential edge portion of the base portion of the outer tank, and the roof portion of the outer tank is assembled on the base portion of the outer tank other than the outer circumferential portion in parallel therewith. In addition, after the roof portion of the outer tank is assembled to some degree, the roof portion is lifted using the jack-up unit to be held on the sidewall of the outer tank during the building-up, and thus the space in which the inner tank is assembled is secured under the roof portion of the outer tank. Accordingly, in the present invention, since the building-up of the sidewall of the outer tank, the assembly of the roof portion of the outer tank, and the assembly of the inner tank can be performed simultaneously, the construction period can be greatly shortened.
In addition, according to a second aspect of the present invention, a step of assembling the roof portion of the outer tank in a state in which the roof portion is held on the sidewall of the outer tank is included.
According to the second aspect of the present invention, before the roof portion of the outer tank is finally mounted on a top portion of the sidewall of the outer tank, the roof portion of the outer tank is assembled in the state immediately before its completion (for example, including bar reinforcement work for concrete placement of the roof) in advance in the state in which the roof portion is held in the middle level of the sidewall of the outer tank. Accordingly, in the present invention, after the building-up of the sidewall of the outer tank is completed, the roof portion of the outer tank is mounted on the top portion thereof, and thus the outer tank can be completed quickly.
In addition, according to a third aspect of the present invention, a step of assembling the inner tank by alternately repeating lifting of an inner tank lateral plate using a jack-up unit and attachment of a next inner tank lateral plate to a lower side of the lifted inner tank lateral plate is included.
According to the third aspect of the present invention, by continuously lifting the inner tank lateral plate using the jack-up unit and adding inner tank lateral plates on the lower side in order, the continuous addition of the inner tank lateral plates is performed at a low position. For this reason, while interference with the roof portion of the outer tank being held in the middle level of the sidewall of the outer tank is avoided, the inner tank assembly work can be safely performed at the low position.
In addition, according to a fourth aspect of the present invention, the sidewall of the outer tank is built up by placing concrete using an outer tank lateral plate as an inner side mold. In addition, according to the fourth aspect of the present invention, a step of forming an opening portion in the outer tank lateral plate in advance, a step of fitting an anchor portion which is connected to an anchor that is embedded in the concrete in the opening portion, and a step of supporting the jack-up unit via the anchor portion that is fitted in the opening portion are included.
According to the fourth aspect of the present invention, the jack-up unit bears the weight of the roof portion of the outer tank when lifting the roof portion, and bears the weight of the inner tank lateral plates when lifting the inner tank lateral plates. In order to cause the sidewall of the outer tank to receive the load exerted on the jack-up unit, the anchor portion is fitted in the opening portion that is provided in the outer tank lateral plate in advance to be integrated with the outer tank lateral plate. Accordingly, it is not necessary to secure strength to bear the jack-up unit by thickening a plate thickness of the outer tank lateral plate or the like, and thus a necessary anchor point can be secured while maintaining the plate thickness of the outer tank lateral plate at a requisite minimum level.
In addition, according to a fifth aspect of the present invention, a step of providing the jack-up unit at a top portion of the sidewall of the outer tank after the sidewall of the outer tank is built up to lift the roof portion of the outer tank, a step of providing a protruding portion on an inner circumferential face of the sidewall of the outer tank to regulate a height at which the roof portion of the outer tank is lifted, and a step of attaching the roof portion of the outer tank whose height is regulated by the protruding portion to the inner circumferential face of the sidewall of the outer tank via a coupler are included.
When the jack-up unit is provided at the top portion of the sidewall of the outer tank in order to raise up the roof portion of the outer tank being held in the middle level of the sidewall of the outer tank, it is not possible to mount the roof portion of the outer tank at the location of the jack-up unit. For this reason, according to the fifth aspect of the present invention, by providing the protruding portion on the inner circumferential face of the sidewall of the outer tank to set the portion as a final installation position of the roof portion of the outer tank, a height of the roof portion of the outer tank is regulated. In addition, by providing the coupler on the inner circumferential face of the sidewall of the outer tank, the roof portion of the outer tank is mounted on the inner circumferential face of the sidewall of the outer tank via the coupler. Accordingly, for example, bar reinforcement work on the roof portion of the outer tank is started in a state in which the roof portion is held in the middle level of the sidewall of the outer tank, and after building-up of the sidewall of the outer tank is completed, the roof portion of the outer tank can be quickly mounted on the inner circumferential face of the sidewall of the outer tank via the coupler.
According to the present invention, a method for constructing a cylindrical tank with which a construction period can be shortened can be obtained.
Hereinafter, an embodiment of the method for constructing a cylindrical tank of the present invention will be described with reference to drawings.
First, as shown in
Next, as shown in
In addition, in parallel with the process, a center portion that is on a further inward side than the annular portion of the base plate 2 is constructed, and thereby the base plate 2 is completed. After the base plate 2 is completed, a base portion liner 7 is laid thereon. Then, a roof trestle 8 is assembled at the center portion on the base plate 2.
Next, a legged trestle 9 is installed along the inner side of a base end portion of the lateral liners 4 as shown in
After the outer tank roof 10 is assembled to some degree, jack-up units 11 are then installed on the PC walls 3 that are being built up as shown in
By being connected to a plurality of anchors 14 which are embedded in the concrete 5, each anchor plate 13 has more excellent strength than the lateral liner 4. The anchor plate 13 is fitted in each opening portion 15 that is formed in the lateral liner 4 in advance, and then the anchor plate 13 is installed integrally with the lateral liner 4 through fillet welding or the like. In other words, proper positions of the lateral liner 4 are partially constituted with the anchor plate 13, and the hanging-side jack stand 12 is fixed to the anchor plate 13.
Note that, in order to support the jack-up unit 11 by providing the hanging-side jack stand 12 on the PC wall 3, it is also possible to secure strength to bear the jack-up unit 11 by increasing the entire plate thickness of the lateral liner 4; however, it hinders reduction of the weight and costs which are attained by optimum design of the lateral liner 4. For this reason, in the present embodiment, using the anchor plate 13 which is attached to the opening portion 15 of the lateral liner 4 and accordingly has increased support strength in parts, the hanging-side jack stand 12 is fixed and the jack-up unit 11 is supported.
With the presence of the anchor plate 13 as described above, it is not necessary to secure the strength to bear the jack-up unit 11 by thickening the entire plate thickness of the lateral liner 4 or the like, and a necessary anchor point can be secured while maintaining the plate thickness of the lateral liner 4 at a requisite minimum level.
Returning to
Note that the hanged-side jack stands 16 may be installed in an upper portion of the outer tank roof 10 rather than the side portion of the outer tank roof 10 as shown in
Then, each jack-up unit 11 is installed across the hanging-side jack stand 12 and the hanged-side jack stand 16. The jack-up unit 11 is configured as a center hole jack as shown in
The plurality of jack-up units 11 with the above-described configuration are installed at a predetermined interval in the tank circumferential direction. Note that the roof trestle 8 can be removed after the roof steel frame portion of the outer tank roof 10 is built up, and a part of the legged trestle 9 can be removed after the jack-up units 11 are installed as described above. After a part of the roof trestle 8 and the legged trestle 9 are removed, the outer tank roof 10 is in the state in which the weight thereof is borne by the plurality of jack-up units 11.
Next, as shown in
By lifting the outer tank roof 10 using the jack-up units 11 as described above, the outer tank roof 10 can be lifted more easily than in the air-raising technique. In other words, since the outer tank roof 10 is lifted using air pressure in the air-raising technique, the outer tank roof 10 should be assembled to the extent that is no air leakage therefrom, and thus it is not possible to lift the outer tank roof 10 halfway unlike in the present embodiment. Further, it is necessary in the air-raising technique to install a blower or the like for blowing air, and to assemble the PC walls 3 and the inner tank lateral plates 20 beforehand.
Next, the outer tank roof 10 that has been lifted using the jack-up units 11 is held on the PC walls 3 as shown in
After the holding stands 21 are installed, the fixation of the hanged-side jack stands 16 to the outer tank roof 10 is released. After the fixation of the hanged-side jack stands 16 is released, the outer tank roof 10 is in the state in which the weight thereof is borne by the holding stands 21. When the outer tank roof 10 is held on the PC walls 3 via the holding stands 21 as described above, the jack main body 11a is driven to rotate in reverse, and accordingly lowered close to the base plate 2. Then, the space under the outer tank roof 10 can be used for the assembly work of the inner tank lateral plates 20. Note that hanged-side jack stands 16 are separately attached to the inner tank lateral plates 20; however, the hanged-side jack stands 16 of the outer tank roof 10 may be diverted thereto.
At the time of assembling the inner tank, the plurality of inner tank lateral plates (which are also sidewalls of the inner tank) 20 are first stood on the legged trestle 9 in the tank circumferential direction as shown in
Next, a plurality of hanged-side attachment cradles 22 corresponding to each of the plurality of hanged-side jack stands 16 are installed on the inner tank lateral plates 20 that are assembled in the circular shape. The hanged-side attachment cradles 22 are installed so as to protrude substantially horizontally with respect to the outward side of the tank from the outer circumferential faces of the inner tank lateral plates 20 that are assembled in the circular shape. The hanged-side jack stands 16 of the jack-up units 11 are detachably fixed to the hanged-side attachment cradles 22. Accordingly, the inner tank lateral plates 20 that are assembled in the circular shape are in the state in which all or a part of the weight thereof is borne by the jack-up units 11. In addition, it is preferable to use an appropriate supporting material for at least one of the inner and outer sides of the inner tank lateral plates 20 in order to prevent deformation of the inner tank lateral plates 20, if necessary.
Next, the inner tank is assembled as shown in
Then, the plurality of inner tank lateral plates 20 disposed in the circular shape are welded to each other, the inner tank lateral plates 20 arranged on the upper and lower sides are welded together, and accordingly, the inner tank lateral plates 20 are integrally formed in a cylindrical shape.
Note that it may be possible for the plurality of inner tank lateral plates 20 to be coupled with each other in the lateral direction outside the tank in advance, the coupled plates are carried inside the tank and formed to the circular shape, and then the inner tank lateral plates 20 arranged on the upper and lower sides are welded together. By coupling the plurality of inner tank lateral plates 20 in the outside of the PC wall 3 in which there is little restriction on a work space as described above, the welding work becomes easy and the inner tank can be efficiently assembled.
In addition, by alternately repeating the lifting of the inner tank lateral plates 20 using the jack-up units 11 and the attachment of the next inner tank lateral plate 20 to the lower side of the lifted inner tank lateral plates 20 as described above to continuously add the next inner tank lateral plates 20 to the lower side of the inner tank lateral plates 20, the addition of the inner tank lateral plates 20 is performed at a low position close to the base plate 2. For this reason, the assembly work of the inner tank is safely possible at the low position while interference with the outer tank roof 10 that is held in the middle level of the PC walls 3 is avoided.
During these steps, the outer tank roof 10 that is held on the PC walls 3 and being assembled is assembled. To be specific, before the outer tank roof 10 is finally mounted on the top portion of the PC walls 3, the outer tank roof 10 is assembled almost completely, including bar reinforcement work for placing roof concrete in the state in which the outer tank roof is held in the middle level of the PC walls 3. In the present embodiment, since the mounting of the outer tank roof 10 onto the top portion of the PC walls 3 is performed via a coupler to be described later, the bar reinforcement work is started when the outer tank roof 10 is at a middle point. Accordingly, in the present embodiment, after the building-up of the PC walls 3 is completed, the outer tank roof 10 is mounted onto the top portion thereof, and thus the outer tank can be quickly completed.
In the present technique, the PC walls 3 are built up in the outer circumferential edge portion of the base plate 2 as described above, and the outer tank roof 10 is assembled in parallel therewith on the base plate 2 other than the outer circumferential edge portion. Thus, when the outer tank roof 10 is assembled to some degree, the outer tank roof 10 is lifted using the jack-up units 11, and then is held by the PC walls 3 that are being built up. Accordingly, the space in which the inner tank is assembled can be secured under the outer tank roof 10, and thus the inner tank can be assembled independently of the outer tank roof 10. Therefore, according to the present embodiment, the building up of the PC walls 3, the assembly of the outer tank roof 10, and the assembly of the inner tank can be performed simultaneously, and thus the construction period can be greatly shortened.
In addition, at the same time, a thermal corner protection 40 for preventing leakage of tank content can be provided in the annular portion that is between the inner and outer tanks in the present technique as shown in
After the building-up of the PC walls 3 is completed, the jack-up units 11 are next provided at the top portion of the PC walls 3 as shown in
Next, the outer tank roof 10 is lifted using the jack-up units 11 and mounted on the top portion of the PC walls 3 as shown in
With the connection structure using the couplers 30 as described above, the bar reinforcement work on the outer tank roof 10 is started in the state in which the roof is held in the middle level of the PC walls 3 as shown in
After the outer tank roof 10 is mounted on the PC walls 3, the jack-up units 11 are next provided in the middle level of the PC walls 3 as shown in
After the inner tank is assembled to the end as shown in
Note that connection positions of the hanged-side jack stands 16 with respect to the inner tank lateral plates 20 may be changed downward. This is so that the inner tank on the base plate 2 can be put down precisely at the predetermined position in the following step. In addition, the inner tank lateral plates 20 on the lower level side have a thick plate thickness in response to relatively high fluid pressure of a content fluid after the completion of the tank, but the inner tank lateral plates 20 on the upper level side (particularly, in the uppermost level) have a thin plate thickness in response to relatively low fluid pressure of the content fluid, and thus connecting the hanged-side jack stands 16 to the lower side of the inner tank lateral plates 20 is favorable in terms of strength.
Next, the legged trestle 9 is removed, and cold insulation work of laying a cold insulation material 41 on the base plate 2 is performed as shown in
In addition, elevation stairs 50 are provided along the PC walls 3, the on-roof framework 51, a barrel nozzle 52, and the like are provided on the outer tank roof 10, and concrete is placed in the outer tank roof 10. Note that concrete placing may be performed immediately after the reinforcing bars 32 on the outer tank roof 10 are connected to the couplers 30 in order to perform a framework operation on the outer tank roof 10.
Then, tension work of the PC walls 3 is performed. In addition, after a pump barrel 53 is installed and the construction site entrance to the inner tank that is not shown is closed, the tank is filled with water to perform pressure resistance and air-tightness tests. Note that the installation of the pump barrel 53 is normally performed before the construction site entrance to the inner tank that is not shown is closed, but the installation time can be arbitrarily set.
Finally, as shown in
Then, painting work and cold insulation piping work are performed, and thereby construction of a cylindrical tank 100 that contains LNG 101 is completed.
As described above, the method for constructing the cylindrical tank 100 which has a metallic inner tank and a concrete outer tank in the present embodiment described above has the step of building up the PC walls 3 in the outer circumferential edge portion of the base plate 2, the step of assembling the outer tank roof 10 on the base plate 2 other than the outer circumferential edge portion of the base plate 2, the step of lifting the outer tank roof 10 which is on the base plate 2 using the jack-up units 11 while the PC walls 3 are being built up and then holding the outer tank roof on the PC wall 3, and the step of assembling the inner tank independently of the outer tank roof 10 in the space under the outer tank roof 10 which is created due to the lifting. For this reason, the building-up of the PC walls 3, the assembly of the outer tank roof 10, and the assembly of the inner tank can be worked simultaneously, which enables the construction period to be greatly shortened. Therefore, according to the present embodiment, the method for constructing the cylindrical tank 100 which can greatly shorten the construction period is obtained.
In addition, in the present embodiment, as the step of assembling the outer tank roof 10 in the state in which the outer tank roof is held on the PC walls 3 is adopted, by completing the building-up of the PC walls 3 and then mounting the outer tank roof 10 on the top portion thereof, the outer tank can be completed quickly.
In addition, in the present embodiment, by alternately repeating the lifting of the inner tank lateral plates 20 using the jack-up units 11 and attachment of the next inner tank lateral plates 20 to the lower side of the limited inner tank lateral plates 20, the continuous addition of the inner tank lateral plates 20 is performed at the low position as the step of assembling the inner tank is adopted, and thus while interference with the outer tank roof 10 held in the middle level of the PC walls 3 is avoided, the work of assembling the inner tank can be safely performed at the low position.
In addition, in the present embodiment, the PC walls 3 are built up by placing concrete using the lateral liners 4 as inner side molds. In addition, as the step of forming each opening portion 15 in the lateral liners 4 in advance, the step of fitting each anchor plate 13, which is connected to the anchor 14 that is embedded in concrete, in the opening portion 15, and the step of supporting the jack-up units 11 via the anchor plate 13 which is fitted in the opening portion 15 are adopted, it is not necessary to secure strength to bear the jack-up units 11 by thickening the plate thickness of each lateral liner 4, or the like, and a necessary anchor point can be secured while maintaining the plate thickness of the lateral liner 4 at a requisite minimum level.
In addition, in the present embodiment, as the step of providing the jack-up units 11 at the top portion of the PC walls 3 after the PC walls 3 are built up to lift the outer tank roof 10, the step of providing angles 31 on the inner circumferential face of the PC walls 3 to regulate the height at which the outer tank roof 10 is lifted, and the step of attaching the outer tank roof 10 whose height is regulated by the angles 31 to the inner circumferential face of the PC walls 3 via the couplers 30 are employed, the bar reinforcement work on the outer tank roof 10 which is held in the middle level of the PC walls 3 is started, and after the building-up of the PC walls 3 is completed, the outer tank roof 10 can be quickly mounted on the inner circumferential face of the PC walls 3 via the couplers 30.
Hereinabove, although the exemplary embodiment of the present invention has been described with reference to the drawings, the present invention is not limited to the embodiment. All shapes, combinations, and the like of the respective constituent members shown in the above-described embodiment are examples, and various modifications can be made based on design requirements, and the like within a scope not departing from the gist of the present invention.
For example, the building-up of the PC walls 3, the assembly of the outer tank roof 10, and the assembly of the inner tank have been described as being worked simultaneously in the above-described embodiment; however, since a work space can be secured above the base plate 2 due to the legged trestle 9, the cold insulation work for the base portion on the base plate 2 may also be performed simultaneously.
In addition, for example, the technique of hoisting the outer tank roof 10 using the jack-up units 11 has been described in the above-described embodiment; however, for example, a type of the jack-up units 11 used to push the outer tank roof 10 up may be changed. With this configuration, the jack-up units 11 may not be installed at the top portion of the PC walls 3 when the outer tank roof 10 is mounted on the PC walls 3, unlike in the above-described embodiment, and thus a structure of the related art can be adopted, without adopting the connection structure that uses couplers.
In addition, for example, the technique of hoisting the outer tank roof 10 using the jack-up units 11 has been described in the above-described embodiment; however, a type of the jack-up units 11 is not limited to this form, and for example, the positional relation between the jack main body 11a and the equalizer 17a may be turned upside down.
In addition, for example, the technique of hoisting the inner tank lateral plates 20 using the jack-up units 11 has been described in the above-described embodiment; however, a type of the jack-up units 11 may be changed to push the inner tank lateral plates 20 up. With this configuration, by preparing one set of the jack-up units 11 for hoisting the outer tank roof 10 and diverting the jack-up units for constructing a plurality of cylindrical tanks 100, the number of necessary jack-up units 11 can be reduced.
In addition, for example, the outer tank roof 10 has been described as being jacked up to be held in the middle level of the PC walls 3 during assembly in the above-described embodiment; however, the suspension deck 43, the on-roof framework 51, the barrel nozzle 52, and the like may be assembled on the base plate 2, and then the outer tank roof 10 that is almost completed may be jacked up to be held in the middle level of the PC walls 3. In this case, it is necessary to take into account the influence of deformation of the steel frame portion of the outer tank roof 10 on the on-roof framework 51 relating to concrete placement of the outer tank roof 10.
In addition, for example, the provision of the jack-up units 11 to support the outer tank roof 10 and the like via the anchor plates 13 has been described in the above-described embodiment; however, depending on the weight of a load to bear, for example, by driving additional concrete studs into the lateral liners 4 to cause supports having stays and the like to bear the load of the outer tank roof 10 and the like without providing the opening portions 15, it is possible to secure sufficient reaction force for supporting the outer tank roof 10 and the like.
In addition, for example, the jack-up units 11 are shared for jack-up of the outer tank roof 10 and jack-up of the inner tank lateral plates 20 in the above-described embodiment; however, respective dedicated jack-up units may be used. Note that, when dedicated jack-up units are used, it is almost unnecessary to change installation positions of the jack-up units, unlike in the above-described embodiment; however, the number of the units increases, and thus it is favorable to select any preferable manner according to a scale of the cylindrical tank 100 to be constructed.
According to the present invention, the method for constructing a cylindrical tank that can shorten a construction period is obtained.
Number | Date | Country | Kind |
---|---|---|---|
2012-244690 | Nov 2012 | JP | national |
This application is a continuation application based on PCT Patent Application No. PCT/JP2013/067853, filed Jun. 28, 2013, whose priority is claimed to Japanese Patent Application No. 2012-244690, filed Nov. 6, 2012. The contents of both the PCT Application and the Japanese Application are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1839578 | Morton | Jan 1932 | A |
1846506 | Wiggins | Feb 1932 | A |
2045478 | Kuehn | Jun 1936 | A |
2057682 | Horton et al. | Oct 1936 | A |
2237308 | Larson | Apr 1941 | A |
2263943 | Ferguson | Nov 1941 | A |
2378126 | Blair | Jun 1945 | A |
2378128 | Cates | Jun 1945 | A |
2649059 | Mercier | Aug 1953 | A |
2708012 | Talcott | May 1955 | A |
2928565 | Glasoe, Jr. | Mar 1960 | A |
2984898 | Svensson | May 1961 | A |
3018546 | Dewese | Jan 1962 | A |
3057054 | Barnes | Oct 1962 | A |
3131908 | Payton | May 1964 | A |
3199839 | Linder et al. | Aug 1965 | A |
3427777 | Crowley | Feb 1969 | A |
3559835 | Lange | Feb 1971 | A |
3595291 | Grunhoff et al. | Jul 1971 | A |
3701262 | Connell et al. | Oct 1972 | A |
3852973 | Marothy | Dec 1974 | A |
4062468 | Bongiovanni | Dec 1977 | A |
4163347 | Marcmann | Aug 1979 | A |
4177915 | Blankenburg | Dec 1979 | A |
4884711 | Bomhard et al. | Dec 1989 | A |
5105590 | Dykmans | Apr 1992 | A |
5271193 | Olsen et al. | Dec 1993 | A |
5287986 | Frost | Feb 1994 | A |
6282863 | Christian et al. | Sep 2001 | B1 |
8603375 | Simmons | Dec 2013 | B2 |
20050144864 | Skovholt | Jul 2005 | A1 |
20080302804 | Simmons et al. | Dec 2008 | A1 |
20100154319 | Shockley | Jun 2010 | A1 |
20100154332 | Shockley et al. | Jun 2010 | A1 |
20110289865 | Martens et al. | Dec 2011 | A1 |
20150053692 | Uchiyama | Feb 2015 | A1 |
20150267434 | Shiomi et al. | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
101858161 | Oct 2010 | CN |
61-233177 | Oct 1986 | JP |
4-370797 | Dec 1992 | JP |
6-313376 | Nov 1994 | JP |
7-253196 | Oct 1995 | JP |
2002-349087 | Dec 2002 | JP |
2003-10968 | Jan 2003 | JP |
2004-144223 | May 2004 | JP |
2004-353319 | Dec 2004 | JP |
2012-1968 | Jan 2012 | JP |
2012-149416 | Aug 2012 | JP |
10-0901728 | Jun 2009 | KR |
1597437 | Oct 1990 | SU |
406721 | Sep 2000 | TW |
2012137671 | Oct 2012 | WO |
Entry |
---|
International Search Report mailed Aug. 13, 2013 in PCT/JP2013/067853 (4 pages). |
Examination Report from the Intellectual Property Office and Search Report mailed in corresponding Taiwan Patent Application No. 102123437 (with an English translation) (7 pages). |
U.S. Appl. No. 14/959,154, Yamada, et al., filed Dec. 4, 2015. |
U.S. Appl. No. 14/967,615, Deguchi, et al., filed Dec. 14, 2015. |
Notice of Non-Final Rejection mailed Sep. 30, 2015 in corresponding Korean Patent Application No. 10-2015-7002770 (with an English translation) (10 pages). |
Number | Date | Country | |
---|---|---|---|
20150197953 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2013/067853 | Jun 2013 | US |
Child | 14668416 | US |