The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the invention, and, together with the description, serve to explain the principles of the invention:
a) illustrates a case in which the total length of a frame preamble exceeds a single OFDM symbol interval in an OFDM wireless communication system;
b) illustrates a case in which the total length of the preamble is shorter than the single OFDM symbol interval;
a) illustrates a case in which the total length of a time-dimension preamble exceeds a single OFDM symbol interval when adjacent cells have different subcarrier positions; and
b) illustrates a case that the total length of the preamble is shorter than the single OFDM symbol interval.
In the following detailed description, only the preferred embodiment of the invention has been shown and described, simply by way of illustration of the best mode contemplated by the inventor(s) of carrying out the invention. As will be realized, the invention is capable of modification in various obvious respects, all without departing from the invention. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not restrictive. To clarify the present invention, parts which are not described in the specification are omitted, and parts for which similar descriptions are provided have the same reference numerals.
In
Here, Pn denotes a frequency-dimension preamble pattern and NFFT represents the number of the entire subcarriers including a null subcarrier.
In the construction of an IFFT input vector of a transmitter, a signal formed in a manner such that a specific pattern having a length corresponding to 1/N of an effective OFDM symbol is repeated can be generated by modulating a subcarrier symbol that is not zero at an interval of N subcarriers.
In the embodiment of the present invention, the length of the preamble corresponds to the sum of the length of the CP and an integer number of times the length of the repetitive pattern. The length of the preamble in the time dimension can be shorter or longer than a single OFDM symbol interval, which is easily realized through cyclic repetition or truncation of an IFFT output vector of an OFDM modulator of the transmitter. Here, the CP length is not required to be identical to the length of CP of a data OFDM symbol transmitted after the preamble. Thus, there is no restriction on the preamble length as long as synchronization acquisition and cell searching performances satisfy requirements. While the preamble is constructed of the repetitive patterns and CP in the embodiment, the preamble can be constructed of only the repetitive patterns. That is, the CP length can be zero.
In the case where all cells in a cellular structure use the same frequency band, subcarrier symbol streams are differently modulated for different respective cells such that a cell to which a signal received by a terminal belongs can be detected.
The preamble is used for frame synchronization acquisition, carrier frequency acquisition, channel estimation, cell search, and so on. The carrier frequency acquisition and channel estimation can be carried out using widely known methods, so the present invention describes only the frame synchronization acquisition and cell search.
If there are M preamble patterns, absolute values of cross-correlation of a received signal and M reference patterns are observed. The moment when the absolute value of any one of outputs of M cross-correlators 211, 212, and 213 or the square 221, 222, or 223 of the absolute value exceeds a predetermined threshold corresponds to the moment when the first one of patterns repeated N times in a preamble has been received. The algorithm using cross-correlation observes output values of the M cross-correlators and identifies cells from reference patterns corresponding to cross-correlators for which a noncoherent combining result value exceeds the threshold to reduce the effect of background noise. The noncoherent combining result value corresponds to the sum of the absolute values of the outputs of the cross-correlators or the sum of the squares of the absolute values. Here, the optimum threshold largely depends on the power level of the received signal or channel situation. This problem can be solved by normalizing cross-correlation with the power of the received signal.
The method using cross-correlation requires cross-correlators for respective preamble patterns of adjacent cells. When the number of preamble patterns is increased in order to arrange cells unrestrictedly, complexity in construction of the algorithm is increased. In many cases, a cross-correlation characteristic is partly maintained even if reference patterns and a received signal are quantized or hard-limited. When a frame synchronization acquisition algorithm as shown in
In the meantime, the length of the repetitive pattern is considerably long when a received signal has a carrier frequency offset. Thus, an excess of 90 degrees of phase shift in a single pattern interval due to the carrier frequency offset causes performance deterioration of more than 3 dB. Accordingly, the length of a single pattern must be shorter than the maximum pattern length calculated based on the maximum carrier offset.
An initial synchronization process including a frame synchronization acquisition step when the cross-correlation-based frame synchronization acquisition algorithm is used will now be explained.
(1) Frame timing acquisition: All of available time domain preamble patterns and a received signal are continuously cross-correlated to detect a moment when at least one of output values of correlators has a large value to detect preamble timing.
(2) Cell search: Preamble patterns corresponding to predetermined correlators having output values whose absolute values exceed a threshold are received at the same time the frame timing is acquired. When a preamble pattern corresponding to a correlator whose output value has a maximum absolute value is detected, it can be judged that an optimum cell has been found. That is, frame timing acquisition and cell search can be simultaneously carried out.
(3) Carrier frequency acquisition: An average phase difference among repetitive patterns appearing during a predetermined interval is calculated based on the acquired preamble timing to estimate a carrier frequency.
In the meantime, a frame timing error between adjacent cell signals is smaller in a hand-off process than the frame timing error in the initial synchronization acquisition step. Thus, a timing window for acquiring frame timing and a candidate PN code set for cell identification are restrictedly given for hand-off. Furthermore, a separate carrier frequency acquisition step can be omitted in the hand-off process because a carrier frequency error between adjacent cell signals is sufficiently small.
Referring to
In
Referring to
The cross-correlations are normalized with the power of the RX signal in the step S94, and it is judged whether the absolute value of arbitrary cross-correlation is larger than a threshold in the step S94. When the absolute value is not larger than the threshold, the process goes to a next sample interval in the step S96. When the absolute value is larger than the threshold, conjugate products of the RX samples are summed up or a product of continuous cross-correlations is obtained in the step S97 and then a carrier frequency offset is estimated in the step S98.
The time-dimension frame synchronization acquisition and cell searching algorithm has the following problems.
Firstly, the received signal and many reference patterns should be cross-correlated when hard-limiting is not applied to the received signal and reference patterns. This increases complexity in construction of the algorithm.
Secondly, since cell search must be carried out within several frames in the event of hand-off, cross-correlation should be executed for all of candidate reference patterns for every sample within a timing window of a predetermined range based on the current frame timing. This requires high power consumption.
In a channel environment such as the pedestrian-B channel model, for example, a signal of a path having a maximum gain is received with power of approximately 40% of the total signal power. Thus, if a terminal, which receives downlink signals having similar power from three adjacent cells, receives a signal from the target cell through the pedestrian-B channel and receives signals from the other two cells through a LOS channel, frame synchronization acquisition and cell identification performances will be remarkably reduced.
Practically, the average frame synchronization acquisition time with respect to the pedestrian-B channel is less than two frames in
The aforementioned performance deterioration occurs because the cross-correlation-based frame synchronization acquisition algorithm individually detects multi-path signals. To avoid this, a method of combining cross-correlation results with respect to all (or a part) of the multi-path signals is required. However, it is impossible to combine the cross-correlation results because even the detection of each of the multi-path signals is not guaranteed.
When the cross-correlation results with respect to the multi-path signals are not combined, cell searching performance can be considerably deteriorated due to the multi-path channel situation. For instance, when three adjacent cells A, B, and C exist, a signal from the cell A is received via three multi-path channels, having ⅓ power level for each channel, and signals from the cells B and C each of which has ½ power level are received through a LOS channel, the cell A should be judged to be the optimum cell because a total reception power of the cell A is high. However, if the multi-path signals are not combined as described above, a preamble signal of the cell B or C, which is received with a power level higher than the reception power level of each of the three multi-path signals from the cell A, is judged to be a preamble signal of the optimum cell.
Finally, the cross-correlation-based frame synchronization acquisition algorithm is subjected to performance deterioration when a timing error that does not correspond to an integer number of times a sample interval is generated. The cross-correlation-based frame synchronization acquisition algorithm detects timing of a received preamble signal as resolution of a single sample. Accordingly, when a sampling timing error corresponding to less than a single sample is generated, the maximum absolute value of cross-correlation is reduced and thus frame synchronization acquisition and cell searching performances are deteriorated. To limit the performance deterioration due to the sampling timing error within 1 dB, at least twice over-sampling is required, which increases complexity in construction of the algorithm.
The present invention provides an auto-correlation-based frame synchronization acquisition algorithm as one of methods for solving the above-described various problems.
The auto-correlation-based frame synchronization acquisition algorithm observes auto-correlation having a time interval of Tb/N for a received signal using the fact that a preamble is constructed such that a specific pattern having a length of Tb/N is repeated K times in the time dimension. To reduce effects of a channel state and a power level of the received signal, frame synchronization is acquired by normalizing auto-correlation with the received signal power and then detecting the moment when the absolute value of the normalized auto-correlation exceeds a predetermined threshold or detecting the moment when the absolute value becomes the maximum value. The frame synchronization acquisition algorithm using auto-correlation is not affected by a carrier frequency offset so that the algorithm is not limited by the length of a repetitive pattern. Furthermore, complexity in construction of the auto-correlation-based frame synchronization acquisition algorithm is considerably lower than that of the cross-correlation-based frame synchronization acquisition algorithm without employing hard-limiting. However, a timing error of a frame synchronization acquisition result of the algorithm using auto-correlation can be larger than that of the algorithm using cross-correlation.
Cell search using preambles having the constructions shown in
Subcarrier symbol streams arranged at an interval corresponding to N subcarriers are modulated differently for respective cells in a preamble generating process to generate preambles that are different for the respective cells. A terminal OFMD-demodulates the preambles and cross-correlates all reference symbol streams and preambles in the frequency dimension to detect a case where the absolute value of cross-correlation becomes the maximum value, to thereby search for an optimum cell.
When the length of each preamble is shorter than a single OFDM symbol interval, the preamble or only a part of the preamble is input to an FFT input vector of a receiver of the terminal and the rest of the FFT input vector is filled with 0s, and then FFT is executed to restore the subcarrier symbol streams transmitted to the terminal. Here, the preamble pattern after OFDM demodulation can be appropriately restored only when the preamble length corresponds to an integer number of times the length of the repetitive pattern.
When the preamble length is longer than the single OFDM symbol interval, a general OFDM demodulation process is performed during an integer number of times the single OFDM symbol interval and the restoration process used when the preamble length is shorter than a single OFDM symbol interval is carried out during intervals in which the preamble length is shorter than the single OFDM symbol interval. Then, the results of the two processes are combined.
An initial synchronization acquisition process when the frequency-dimension cell search is employed is as follows.
(2) Carrier frequency acquisition: The approximate preamble timing is detected, and then an average phase difference among repeated patterns in the preamble interval is calculated to estimate a carrier frequency.
(3) Cell search: The preamble signal for which an initial carrier frequency error has been estimated and compensated is OFDM-demodulated, and the preamble signal and all available preamble patterns are cross-correlated to search for patterns having large absolute values of cross-correlation, thereby detecting received preamble patterns. Here, the preamble patterns are detected using differential demodulation in the frequency domain because a frame timing acquisition error exists and cell identification is carried out prior to channel estimation. That is, since most adjacent subcarriers demodulated with a symbol that is not 0 in the frequency-dimension preamble patterns have similar channel characteristics, the preamble signals are differentially demodulated in the frequency dimension to compensate for a channel gain, and then cross-correlation of frequency-domain reference patterns and the differentially demodulated patterns is observed.
Similar to the cross-correlation-based initial synchronization acquisition algorithm, a frame timing error and a carrier frequency error between adjacent cell signals are small in the event of hand-off in the auto-correlation-based initial synchronization acquisition algorithm. Thus, only a cell searching process for a limited number of preamble patterns is carried out.
The condition of the simulation with respect to
In
The upper right graph of
The lower left graph of
The lower fight graph of
Referring to the upper left graph of
Referring to the upper right graph of
From the lower graphs of
In the meantime, calculation of auto-correlation for a received signal for acquiring frame synchronization must execute a sliding sum for complex conjugate multiplication of a received signal delayed by the length of a repetitive pattern and the current received signal. For this, the auto-correlation-based frame synchronization acquisition algorithm requires a complex multiplier, a sliding summer, and a shift register having the same length as the length of the repetitive pattern. While the number of components constructing the auto-correlation-based algorithm is much smaller than the number of components constructing the cross-correlation-base algorithm, the auto-correlation-based algorithm needs the sliding summer because the algorithm must calculate a new auto-correlation for each sample due to its structure of detecting a preamble start point. The sliding summer can be constructed of a shift register 110, an adder 120, and an accumulator 130 in consideration of configuration complexity, as shown in
In the meantime, hard-limiting can be used for a received signal in the auto-correlation-base algorithm as in the cross-correlation-based algorithm, such that complexity in construction of the auto-correlation-based algorithm can be remarkably reduced. In this case, normalization of auto-correlation with reception power is not needed and the sliding summer can be simply constructed of a shift register, a 1-bit full adder, and an up/down counter. Furthermore, error propagation is not generated.
In a frequency-selective fading channel environment, performance deterioration occurs even when differential demodulation is used. In the case of a terminal, which is located at a cell boundary and thus receives overlapped downlink signals from a plurality of adjacent cells, cell search and identification become more difficult. To solve this problem, the present invention provides a method of defining cell groups having different positions of subcarriers constructing a preamble to arrange adjacent cells such that the adjacent cells belong to different cell groups. Here, the preamble in the time dimension is not constructed such that a specific pattern is repeated but has a form in which a specific pattern is subjected to phase shift, as shown in
When the cell groups have different subcarrier positions but use the same subcarrier symbol stream, a difference between the subcarrier positions of the cell groups should be larger than twice an initial carrier frequency offset. When the cell groups respectively have different subcarrier positions and use different subcarrier symbol streams, there is no restriction on a difference between the subcarrier positions of the cell groups. When the respective cell groups have different subcarrier positions and the cells are appropriately arranged such that interference between cells having the same subcarrier position is sufficiently reduced, there is no collision of preamble signals and thus even channel estimation can be carried out using preambles.
While this invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
According to the present invention, time and frequency resources can be effectively utilized while mitigating restrictions on frame structure design. Furthermore, the present invention provides the cross-correlation-based algorithm and auto-correlation-based algorithm as an initial synchronization acquisition method. The two algorithms complement each other. Moreover, the algorithms employ hard-limiting to remarkably reduce complexity in constructing the algorithms and eliminate a normalization process. Furthermore, a large number of preamble patterns can be unrestrictedly generated based on preamble patterns in the frequency dimension.
Number | Date | Country | Kind |
---|---|---|---|
10-2003-0097867 | Dec 2003 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR04/02730 | 10/27/2004 | WO | 00 | 5/25/2007 |