The present invention relates generally to the field of combustion and flue gas cleanup methods and apparatus and, in particular, to a new and useful method and apparatus for removing mercury from the flue gases generated during the combustion of fossil fuels such as coal, or solid wastes, through the use of hydrogen sulfide.
In recent years, the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) have supported research to measure and control the emissions of Hazardous Air Pollutants (HAPs) from coal-fired utility boilers and waste to energy plants. The initial results of several research projects showed that the emissions of heavy metals and volatile organic carbons (VOCs) are very low, except for mercury (Hg). Unlike most of the other metals, most of the mercury remains in the vapor phase and does not condense onto fly ash particles at temperatures typically used in electrostatic precipitators and fabric filters. Therefore, it cannot be collected and disposed of along with fly ash like the other metals. To complicate matters, mercury can exist in its oxidized (Hg+2) form, principally as mercuric chloride, (HgCl2), or in its elemental (Hg0) form as vaporous metallic mercury. The relative amount of each species appears to depend on several factors such as fuel type, boiler combustion efficiency, the type of particulate collector installed, and various other factors.
The search for industrially acceptable methods for the capture of mercury from industrial flue gases has included a significant effort to determine how much mercury can be removed by existing, conventional air pollution control equipment. One device used in air pollution control is the wet scrubber, which is designed for the capture of sulfur oxides and other acid gases. Tests have been performed on several commercial scale and pilot scale wet scrubbers. These tests have produced some expected and some surprising results. It was generally expected that the oxidized mercury would be easily captured and the elemental mercury would be difficult to capture. These expectations were based on the high solubility of mercuric chloride in water and the very low solubility of elemental mercury in water. This expectation was generally fulfilled.
The surprising result concerned elemental mercury. Repeated tests during which the concentration of elemental mercury in the flue gas was measured revealed that more elemental mercury was leaving the wet scrubber than was entering.
One postulate proposed to explain the cause of the elemental mercury generation in the wet scrubber is described for example, by the following general reactions:
Me0+Hg+2→Me+2+Hg0
2Me++Hg+2→2Me+2+Hg0
Me is any number of transition metals such as Fe, Mn, Co, Sn, . . . .
Transition metal ions are generally present in wet scrubber slurries as impurities in the industrial applications of concern. Thus, as the mercuric chloride is absorbed, a portion reacts with and becomes reduced by trace levels of transition metals and metal ions and because of its low solubility the elemental mercury is stripped from the liquid and returned to the flue gas.
Most of the recent efforts to capture and remove mercury from the flue gas produced by coal-fired units have concentrated on gas-phase reactions with introduced reagents such as activated carbon.
The subject of mercury emissions by the utility and waste to energy industries is a new area being investigated by both the DOE and EPA.
The present invention provides a means in the wet scrubber to rapidly precipitate the oxidized mercury at the gas/liquid interface in the wet scrubber before it can be reduced by the transition metals. One of the most insoluble forms of mercury is mercuric sulfide, which in mineral form is cinnabar. One means for supplying a source of sulfide for the oxidized mercury to react with is hydrogen sulfide. Thus, at the gas/liquid interface in the scrubber, the following reaction is proposed for the absorption and precipitation of ionized (oxidized) mercury:
H2S(g)+HgCl2(g)→HgS(s)+2HCl(aq)
HgS has a solubility product of 3×10−52 and therefore precipitates essentially completely.
There is good reason to expect that the precipitation reaction proceeds faster than the reduction reactions. Specifically, in the case of the precipitation reaction, both reactants are well mixed in the gas phase. Thus, as they diffuse from the gas to the gas/liquid interface both reactants can react instantly at that interface. By contrast, the reduction reactions require that the reactants, i.e., the Hg+2 and the transition metal ion, diffuse in the liquid phase to a reaction plane in the liquid. Liquid phase diffusion is orders of magnitude slower than gas phase diffusion. Therefore, the oxidized mercury will rapidly precipitate as cinnabar in the scrubber and thereby prevent the reduction of that mercury back to vaporous elemental mercury. The precipitation of mercury as cinnabar has a distinct advantage over other mercury sequestering methods in that it converts mercury to a very insoluble form. In this way, the mercury should be inert and effectively removed from the food chain.
Accordingly, one aspect of the present invention is drawn to an improvement in a method using a wet scrubber for receiving and scrubbing an industrial gas containing mercury with a wet scrubber slurry, the improvement comprising: adding hydrogen sulfide to the industrial gas; and scrubbing the industrial gas in the wet scrubber. The method according to the present invention is particularly suited to the task of reducing mercury emissions in an industrial process which burns coal in a furnace to produce an exhaust flue gas, including conveying the exhaust flue gas through a dust collector and adding hydrogen sulfide to the flue gas before it enters the wet scrubber, or within the wet scrubber.
Another aspect of the present invention is drawn to an apparatus using a wet scrubber for receiving and scrubbing an industrial gas containing mercury with a wet scrubber slurry, and particularly the improvement comprising: means for generating hydrogen sulfide; and means for supplying the hydrogen sulfide to the industrial gas upstream of the wet scrubber. The present invention is again particularly suited to utility installations which burn fossil fuels such as coal, or solid wastes, and which use, in addition to the wet scrubber, an electrostatic precipitator or a fabric filter and other conventional components for reducing emissions to the atmosphere.
Particularly, the present invention contemplates provision of a hydrogen sulfide generating system which produces the hydrogen sulfide from a reaction of adding an acid to a solution of aqueous sodium and/or potassium sulfide to generate the hydrogen sulfide. Advantageously, the hydrogen sulfide generating system may use equipment and methods wherein the acid is added to green liquor from the Kraft pulping process to generate the hydrogen sulfide.
The system has an inherent safety advantage in that no gas phase H2S is accumulated or stored. All H2S that is generated is immediately injected.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific benefits attained by its uses, reference is made to the accompanying drawings and descriptive matter in which a preferred embodiment of the invention is illustrated.
In the drawings:
Referring to the drawings generally, wherein like reference numerals designate the same or functionally similar elements throughout the several drawings, and to
As will be described infra, an alternate embodiment of the present invention involves methods and apparatus for the addition of trace amounts of hydrogen sulfide to industrial gases which are treated by dry scrubber flue gas desulfurization systems. Thus, while the majority of the following description is presented in the context of the present invention as being applied to wet scrubber systems, it will be appreciated that the present invention is not limited thereto. Further, since both wet and dry scrubbers remove sulfur species from the flue gas by introduction of an alkali sorbent, some common terminology may be used as appropriate for the sake of convenience. In the case of wet scrubbers, the alkali sorbent can be provided as an aqueous alkali solution or slurry; in dry scrubbers, the alkali sorbent is usually provided as an aqueous alkali slurry. Thus, for the sake of convenience in the following description, the term aqueous alkali reagent will be used to encompass both aqueous alkali solutions and/or aqueous alkali slurries as appropriate to the type of scrubber means being used.
As illustrated in
The wet scrubber 30 contains, in a lower portion thereof, an inventory of wet scrubber slurry 38. During operation of the wet scrubber 30, recirculation pumps 40 pump and recirculate the wet scrubber slurry 38 up through pipes 42 and into absorber spray headers 44 located in an upper portion of the wet scrubber 30. The wet scrubber slurry 38 is sprayed counter currently into the flue gas 16 where it absorbs SO2. The wet scrubber slurry 38 falls down through various devices and drains back into the lower portion of the wet scrubber 30. The scrubbed flue gas 16 then exits from a wet scrubber outlet 46 and is eventually conveyed to the stack 32.
Referring now to
Air 68 is provided by fan (blower or compressor) means 70 into the upper section 52 of tank 51 where it mixes with the H2S. Line 72 from the upper section of the tank 51 conveys the mixture 74 of air and H2S to an injection system 76 in flue 28 for injecting the H2S-air mixture 74 into the flue gas 16.
The rate of hydrogen sulfide generation is controlled by the rate of acid addition. The rate of air 68 provided into the tank 52 is controlled by the fan means 70 that supplies the air 68 in the quantity and at the pressure necessary for rapid mixing of the H2S-air mixture 74 with the flue gas 16 at an inlet 78 to the wet scrubber 30.
The H2S-air injection system 76 can comprise one or more pipes 78 arranged in a simple grid, each of the pipes 78 being provided with a plurality of apertures 80, the pipes 78 arranged across a width W and height H of flue 28, as shown in
As described earlier and as illustrated in
Advantages of the present invention include the fact that the cost of control of mercury emissions according to the present invention is relatively insignificant compared to the costs for control of other hazardous air pollutants. Further, the amount of H2S required should be below the threshold odor level. The cost and operating expenses of a system as depicted in
According to the present invention, the mercury in the flue gas 16 ends up as mercuric sulfide (also known as cinnabar). This is the chemical form that mercury is most often found in nature and is probably the most desirable chemical form to sequester mercury. Much of the mercury in this form is present as a fine particulate in the scrubber slurry and for that reason, it is possible to separate much of the mercury from the gypsum crystals.
While a specific embodiment of the invention has been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles. By way of example and not limitation, while the principles of the present invention were described as being particularly applicable to fossil-fired boiler installations, it will be appreciated by those skilled in the art that the present invention can be used to remove mercury from industrial gases produced by refuse incinerators, refuse boilers, hazardous waste incinerators, or ore roasters.
This is a divisional application of U.S. Ser. No. 09/894,558 filed Jun. 28, 2001, which is a divisional application of U.S. Ser. No. 09/282,817 filed Mar. 31, 1999, now U.S. Pat. No. 6,284,199 B1, and the text of the aforementioned patent applications are hereby incorporated by reference as though fully set forth herein.
The subject matter of the present invention was developed under a research contract with the U.S. Department of Energy (DOE), Contract No. DE-FC22-94PC94251, and under a grant agreement with the Ohio Coal Development Office (OCDO), Grant Agreement No. CDO/D-922-13. The governments of the United States and Ohio have certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
Parent | 09894558 | Jun 2001 | US |
Child | 11055526 | Feb 2005 | US |
Parent | 09282817 | Mar 1999 | US |
Child | 09894558 | Jun 2001 | US |