Method for control of the thickness of extruded film

Abstract
The present invention relates to a process for the automatic control of the thickness of extruded film (8). The purpose of the invention is to lower the deviations in the thickness of the film more quickly after the start of the extrusion process.
Description

The present invention relates to a process for the automatic control of the thickness of extruded film.


Processes of such type are used both in flat sheet film extrusion as well as in blown film extrusion.


In modern extrusion plants, these processes usually comprise the following process steps, which are also specified in the preamble of the main claim 1:

    • Measurement of the thickness profile of the film just extruded with the help of a thickness-measuring probe that is moved along the surface of the film substantially perpendicular (x) to the conveying direction (z) of the extruded film. The thickness-measuring probe records for each measuring cycle (MZ) a thickness profile (P) of the film at least across parts of the expansion of the film perpendicular (x) to its conveying direction (z),
    • Transmitting the measured values to a control unit,
    • Storage of the measured values underlying the thickness profiles in a storage unit,
    • Provision of statistical values of the film thickness (5) using a computer (14), whereby the computer (14) takes into account measured values or information derived therefrom using a definite number (N) of measuring cycles (MZ) and, if necessary, provides measured values from recent and older measuring cycles with different weighting factors,
    • Determination of the deviations in the statistical values of the film thickness from a target value,
    • Generating control commands to a device for controlling the film thickness.


The measuring devices outlined above are known from published prior art. Thus the patent specification DE 40 09 982 A1 proposes a capacitive sensor for measuring the thickness of the wall of a film tube. However, even other principles of measurement are used to measure the film thickness. For instance, even the measurements of the transmission behavior of beta radiation, gamma radiation, x-radiation and infrared radiation have proved to be useful. In blown film plants they are usually guided around the film tube that is just extruded. In flat film plants the sensor traverses across the width of the flat film extruded.


In this connection, statistical specifications about the development of the film thickness in terms of time generated using a computer serve to avoid an overmodulation or overshooting of the control process. For this purpose the computer takes into account measured values of a definite number of measuring cycles. The statistical values usually involve the computation of an average value or meridian. However, it is also possible to determine other statistical parameters.


Furthermore, it is possible to provide the computer with information derived from the measured values instead of the measured values themselves. This information derived from the measured values can be statistical values that result in the updated statistical values by taking into account the most recent measured values. Thus, for instance, an average value can be computed by feeding the average value of the last N measurements to the computer. The computer then only has to take into account the current measured value while computing the updated average value.


Information derived from measured values can also exist in the form of recorded “older” control commands that are adjusted on the basis of current measured values. Measured values from a definite number of measuring cycles are used while computing the statistical values. Often measured values from a definite number of measuring cycles, for instance, the last N measuring cycles are used. Finally, in order to compute the average value the sum of the measured values at definite positions in x-direction is calculated and divided by N.


Furthermore, various methods can be used to determine the contribution of the measured values from different measuring cycles in the computation of the statistical values. Thus, for instance, greater importance can be accorded to the more recent, just recorded measured values than to the older values while computing the statistical values.


This variable weighting of the measured values, in short MWn, can be carried out with the help of weighting factors, here kn. In a statistical function that is similar to the average value computation, the sum would be computed as follows:

Σ=k1MW1+k2MW2+. . . +knMWn


However, in this example, this sum would not be divided only by N, instead by the sum

Σ=k1+k2+. . . +k


in order to derive the statistical value similar to the average value. The information derived by the computer from the measured values and/or the statistical values is fed to a control unit that controls a device for controlling the film thickness. The thickness of the film can be controlled using different means. Thus, for instance, the width of the die gap or of the die ring can be varied in certain sections in order to be able to increase or decrease the throughflow of the melt at the desired places.


However, the control unit can also control the temperature of the melt by means of heating or cooling agents. Using the temperature it is possible to control in a targeted manner the viscosity of the melt. Should the viscosity of a melt be higher in one place than in other places, then the melted mass can “melt” more strongly in this place, thus causing the film to have a lesser thickness in this place.


Likewise the thickness of the film can be changed by stretching it in certain places. In this context, the property of the film that allows the already solidified and partially cooled film to stretch is exploited. The regions of the film that are stretched more strongly subsequently exhibit a lesser thickness than the regions of the film that are stretched using lesser strength. The force required for stretching the film is frequently made available by blow air. In this case the control unit controls the volume flow of the blow air in certain regions.


The measurement processes described above have proved to be useful in practice particularly in continuous operation. However, since in recent times a trend toward job orders of smaller sizes and thus toward a more frequent change-over of the film material can been noted, increasingly greater significance is attached to the automatic control of the film thickness at the start of the extrusion process.


However, film materials with unacceptable thickness tolerances and thus rejections have been produced using automatic control processes according to prior art during an important time span at the start of the extrusion process.


Therefore the objective of the present invention is to lower more quickly the deviations in the thickness of the film after the start of the extrusion process.


This objective is achieved by the fact that

    • While providing the statistical values in relation to the older measured values, the latest measured value(s) during a predetermined time-frame at the start of the extrusion process are more heavily weighted by the computer (14) than those measured during the normal operation.


By heavily weighting the more recent measured values, the thickness deviations at the start of the measuring process can be reduced. The stronger consideration of the more recently recorded measured values according to the invention is advantageously possible by lowering the number (N) of the measuring cycles from which the measured values are taken into account and/or by changing the weighting factors (kn) with respect to the usual values in the normal operation.


However, it appears inexpedient to retain the process of strong consideration of the more recent, just derived measured values during the entire operation because it makes the control process too sensitive to variations. Therefore, the statistical parameters mentioned above (N and kn) should be traced back in the course of the extrusion process to the values of the normal operation.


The required control of the number of measuring cycles from which the measured values are weighted and/or the change of the weighting factors to the usual values in the normal operation takes place advantageously in a series of steps within a large number of measuring cycles.


The object of this patent application is also a device that is suitable for executing the process according to the invention.


An embodiment of the invention can be based on the drawings and the graphic representation.




The individual figures show:



FIG. 1 side view of a device according to the invention for manufacturing a film using the process pursuant to the invention.



FIG. 2 top view of the device illustrated in FIG. 1





FIGS. 1 and 2 illustrate a device for manufacturing extruded films. A granulate is used as the starting material for manufacturing the films. The granulate is fed to the device by means of the feed hopper 1. From there the granulate enters into the extruder 2 in which it is molten by applying high pressure and heat. This melt is fed to the sheet die 4 using the pipeline 3. The melt is substantially distributed inside the sheet die 4 on its entire width. The melt emerges from the die gap 5 and arrives onto the chill roller 6. The gap width of the die gap 5 can be changed in certain sections in a manner that is not illustrated here. The melt solidifies on the chill roller and becomes film 8. This film 8 wraps around the chill roller 6 to a large extent and is cooled down strongly by the latter. The film 8 is fed by means of a deflecting roller 7 to a winding device 9 where it is wound up into a roll 10.


A thickness-measuring device 11 measures the thickness of the film 8 after it has passed the deflecting roller 7. The thickness-measuring device 11 comprises of the thickness-measuring probe 12 that consists of a transmitter 12a and a receiver 12b. The measured values are fed by means of a data line 13 to the computer and storage unit 14. The machine operator can access the measured values or the information derived therefrom by means of the monitor 15. The monitor 15 can also be used for the input of parameters. If necessary, another input device that is not illustrated here can also be used for this purpose. The computer and storage unit 14 provides information to the control unit 17 by means of the data line 16 for controlling the device that controls the thickness of the film. From this information the control unit 17 determines control commands and transmits these using the control line 18 to the device that controls the thickness of the film. In the embodiment of the present invention illustrated here the control commands are used for varying the gap width of the die gap 5.



FIG. 2 illustrates the effective progression of the path 19 created by the measuring heads 12 if they move at a uniform speed in the direction (x) perpendicular to the conveying direction (z) of the film 8. For the purpose of determining a complete thickness profile of the film 8, the measuring heads 12 move up to the borders of the film 8.

LIST OF REFERENCE SYMBOLS 1Feed hopper 2Extruder 3Pipeline 4Sheet die 5Die gap 6Chill roller 7Deflecting roller 8Film 9Winding device10Roll11Thickness-measuring device12Thickness-measuring probe13Data line14Computer and storage unit15Monitor16Data line17Control unit18Control line19Effective path progression 12aTransmitter of the thickness-measuring probe 12bReceiver of the thickness-measuring probexDirection of movement of the measuring head 11zConveying direction

Claims
  • 1. Process for the automatic control of the thickness of extruded films that comprises of the following features: Measurement of the thickness profile of the film just extruded (8) with the help of a thickness-measuring probe (12) that is moved along the surface of the film substantially perpendicular (x) to the conveying direction (z) of the extruded film (8). The thickness-measuring probe records for each measuring cycle (MZ) a thickness profile (P) of the film (8) at least across parts of the expansion of the film (8) perpendicular (x) to its conveying direction (z), Transmitting the measured values to a control unit (14, 15, 17), Storage of the measured values underlying the thickness profiles in a storage unit (14), Provision of statistical values of the film thickness (5) using a computer (14), whereby the computer (14) takes into account measured values or information derived therefrom using a definite number (N) of measuring cycles (MZ) and, if necessary, provides measured values from recent and older measuring cycles with different weighting factors, Determination of the deviations in the statistical values of the film thickness (5) from a target value, Generating control commands to a device for controlling the film thickness (5) characterized in that, while providing the statistical values in relation to the older measured values, the latest measured value(s) during a predetermined time-frame at the start of the extrusion process are more heavily weighted by the computer (14) than those measured during the normal operation.
  • 2. Process pursuant to claim 1characterized in that the computer (14) determines the statistical values by taking into account measured values or information derived therefrom using a smaller number (N) of measuring cycles (MZ) during a predetermined time-frame at the start of the extrusion process than the number of measuring cycles used during the normal operation.
  • 3. Process pursuant to claim 1characterized in that the computer (14) determines the statistical values during a predetermined time-frame at the start of the extrusion process wherein at least one older measured value is provided with a smaller weighting factor than the weighing factor used during normal operation.
  • 4. Process pursuant to claim 1characterized in that the computer (14) determines the statistical values during a predetermined time-frame at the start of the extrusion process wherein at least one recent measured value is provided with a larger weighting factor than the weighting factor used during normal operation.
  • 5. Process pursuant to claim 2characterized in that the number (N) of measuring cycles (MZ) and/or the weighting factors after the start of the extrusion process are made to approximate in steps the number (N) of measuring cycles (MZ) used in the normal operation and/or the weighting factors used in the normal operation.
  • 6. Device for the automatic control of the thickness of the extruded film (8) having the following features: a thickness-measuring probe (12) for measuring the thickness profile of the film just extruded (8) that is moved along the surface of the film (8) substantially perpendicular (x) to the conveying direction (z) of the extruded film (8). The thickness measuring probe (12) records for each measuring cycle (MZ) a thickness profile (P) of the film (8) at least across parts of the expansion of the film (8) perpendicular (x) to its conveying direction (z), Transmitting the measured values to a control unit (14, 15, 17), A storage unit (14) for recording the measured values and the information derived therefrom, A computer (14) for providing statistical values of the film thickness (5) taking into account measured values or information derived therefrom using a definite number (N) of measuring cycles (MZ) and using which (14), if necessary, measured values from recent and older measuring cycles can be provided with different weighting factors, whereby even the deviations in the statistical values of the film thickness (5) from a target value can be determined using the computer (14), A device (17) for generating control commands to a device for controlling the film thickness (5) characterized in that while providing the statistical values in relation to the older measured values the latest measured value(s) from a predetermined time-frame at the start of the extrusion are heavily weighted using the computer (14) than during the normal operation.
  • 7. Process pursuant to claim 2characterized in that the computer (14) determines the statistical values during a predetermined time-frame at the start of the extrusion process wherein at least one older measured value is provided with a smaller weighting factor than the weighing factor used during normal operation.
  • 8. Process pursuant to claim 2characterized in that the computer (14) determines the statistical values during a predetermined time-frame at the start of the extrusion process wherein at least one recent measured value is provided with a larger weighting factor than the weighting factor used during normal operation.
  • 9. Process pursuant to claim 3characterized in that the computer (14) determines the statistical values during a predetermined time-frame at the start of the extrusion process wherein at least one recent measured value is provided with a larger weighting factor than the weighting factor used during normal operation.
  • 10. Process pursuant to claim 3characterized in that the number (N) of measuring cycles (MZ) and/or the weighting factors after the start of the extrusion process are made to approximate in steps the number (N) of measuring cycles (MZ) used in the normal operation and/or the weighting factors used in the normal operation.
  • 11. Process pursuant to claim 4characterized in that the number (N) of measuring cycles (MZ) and/or the weighting factors after the start of the extrusion process are made to approximate in steps the number (N) of measuring cycles (MZ) used in the normal operation and/or the weighting factors used in the normal operation.
Priority Claims (1)
Number Date Country Kind
103 00 374.6 Jun 2003 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP03/14056 12/9/2003 WO 5/16/2006