This invention relates to a method for the controlled ink-jet spreading of polymers for insulation and/or protection of printed circuits, according to the preamble of the main claim.
1. Technical Field
The method finds particular and useful application in the manufacturing processes of printed circuit electronic cards.
2. Background Art
At present various manufacturing methods are known for printed-circuit electronic cards.
Particular reference is made here to the cards made up of a sheet of plastic material for example plastic reinforced with fiberglass with a layer of electrically conductive material placed on the surface such as, for example, copper, said sheets being later cut into the dimension and profile of the desired card.
This deposition of the protective insulating polymeric layer on the printed card or board is carried out with different techniques, generally sprinkling or curtain coating.
The spreading of the layer on a stepped/engraved surface (the level of the printed board is higher than the level of the plastic surface of the card for the value of the copper layer of approximately 45 microns) involves the need to apply a substantial protective insulating layer, otherwise the corners of the circuit conductor lines might remain exposed and therefore render the card defective.
The total protection thickness implies therefore a maximum deposition of 60 microns with evident material wastage.
The result of the cards obtained is not, however, always of the highest quality and precision due to the inevitable overflow of the deposited liquid material.
The overflow is furthermore inevitable because the metal is not as absorbent as paper and despite the porosity of the plastic material it is not as high as that of the paper and for this reason it is very difficult to obtain sharp defined outlines.
Furthermore, these insulating and protective materials are expensive.
The system for covering and protecting the cards by means of silk screening is also known. However, this method is very slow and involves the use of notable material and does not allow adequate quality and precision to be obtained.
EPO 930641A (Seiko Epson Corp.) disclosed a “Pattern Formation Method and Substrate Manufacturing Apparatus”.
In this document (column 15, line 40-column 16, line 20), it is disclosed the use of “ . . . forming banks—in the form of dikes—that inhibit the outflow of fluid near the borders of the pattern-forming region as a physical-chemical action, . . . ”. The suggested system uses, on a single advancing printing action (FIG. 10), the formation of both banks (706) with a first treatment apparatus (306), immediately followed by an ink-jet print head (2) that ejects the ink fluid droplets (11-12) inside the pattern-forming region delimited by said banks (706). A plasma ashing, etching, or another method for bank removal is further used. The bank material (polyamides, acrylic resins, epoxy resins and the like) being conceptually different from the following ink droplets (12).
This solution has the disadvantage of using:
two deposition apparatus, one following the other (306, 2);
two different materials, one for the banks (706) and one for the main scope of the printer, namely the liquid ink (12);
additional bank-removal head following pattern-fixing (line 18-19, column 16) or a following treatment apparatus (310) by rubbing, returning the overflowing portions back to the confines of the pattern-forming region and forming a pattern (15) of a specific width (line 41 to 53 of column 16).
The aim of the present invention is that of increasing the quality of the product by means of higher precision technology and furthermore, by considerably reducing the amount of protective and insulating polymeric material thus reducing significantly the manufacturing costs.
A further aim of this invention is that of reducing manufacturing time whilst still improving the quality of the product.
The problem is solved with a method for the controlled ink-jet spreading of polymers for insulation and/or protection of printed circuits according to the characterizing part of the main claim.
Therefore, using a first border-contour deposition (bedding deposition) to contour or border or profile or delimit the deposition surfaces, before proceeding to the deposition of the layer on the surface concerned in such a manner that the last one is delimited by the first bedding deposition.
The sub-claims constitute preferred embodiments.
Thanks to the preventive border-contour system of the design to be covered there is the great advantage of being able to add edge limits that allow the successive deposition layer to be contained so as to prevent overflowing out said previously deposited border-lines, thus obtaining absolute precision and a precise minimum thickness.
The result will be a product of a better final quality with a considerably lower amount of material used, as will be explained in the following.
Naturally, the design border-contour operation, is a bedding deposition by means of a succession of linear punctiform jets, this being obtained with the suitable calibration of polymerization rapidity, fluidity and viscosity of the material, using an almost circular deposition section or in any case at least almost semicircular, with an edge height therefore that is normally calibrated to 15 microns. In this way the deposit of the subsequent filling between the border-line edges will be contained without any danger of overflowing this delimiting “track” previously applied.
The invention is now described with the aid of the enclosed drawings that illustrate in a schematic cross section a portion of a printed circuit card in the specific case concerned, in an enlarged view of two electric conductor lines.
All the deposits are made by means of a pixel jet system namely with the so-called inkjet system where, in contrast, ink is sprayed in pixels (punctiform droplets) onto said insulating polymeric material for protection and/or insulation.
a represent respectively the following filling step of covering/filling the conductive surface between the previous bedding design border-contour or bordering lines, in the first case insulating the upper surface and in the second case providing the complete insulation of the conductors also on their side.
With reference to the figures, it is noted that:
For purely indicative purposes, the superficial dimensions of the various layers and materials are set out below:
In this way, it is possible to save a significant amount of material that is notoriously very expensive and at the same time obtain better quality and precision, avoiding the overflow of the polymer applied.
Advantageously, the thickness of the outline deposit is within the range of 10 and 20 microns, preferably 15 microns.
More advantageously, the height of the printed circuit is within the range of 30-60 microns, preferably around 45 microns, for which a repeated deposit on the sides of the edges would involve three deposits to cover the sides and a fourth to project over the cover of the upper surface.
Even more advantageously, the filling thickness of the spaces between the said printed circuits is in the range of 3 to 7 microns, preferably 5 microns.
The method, according to the main claim, is carried out rapidly with a fast-polymerizing/hardening material so that it protrudes/raises in thickness, the polymerization/hardening being sufficiently rapid to form a barrier/border against the liquid of subsequent filling deposition layers between them.
Advantageously the deposition of these border-contour lines is carried out in such a way as to form barrier for the following deposition, to avoid overflowing and to contain the subsequent filling layer between them.
It is evident that the profiling (border-contour) according to the profile of the design of the electrically conductive part, that in accordance with the characteristics of the principal claim, protrude/raise more or less from the surface, must first be polymerized or at least partially hardened before the filling between these “border-lines” with successive subsequent filling phase, the last one being exactly defined between the edges of the previous border-line contour deposition.
In this way the deposition of the filling will not be able to exceed/overflow said border contour lines limits already polymerized/hardened.
This application is a continuation of pending International Patent Application No. PCT/IT2003/000709 filed Oct. 31, 2003, which designates the United States and claims priority of pending Italian Patent Application No. UD2002A000238 filed Nov. 11, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3508984 | Travis | Apr 1970 | A |
5683924 | Chan et al. | Nov 1997 | A |
6320137 | Bonser et al. | Nov 2001 | B1 |
6599582 | Kiguchi et al. | Jul 2003 | B2 |
6710381 | Huang et al. | Mar 2004 | B1 |
6877853 | Kiguchi et al. | Apr 2005 | B2 |
7114802 | Kiguchi et al. | Oct 2006 | B2 |
20010041250 | Werkhoven et al. | Nov 2001 | A1 |
Number | Date | Country |
---|---|---|
0930 641 | Jul 1999 | EP |
2330 331 | Apr 1999 | GB |
2000-353594 | Dec 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20050263875 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IT03/00709 | Oct 2003 | US |
Child | 11125482 | US |