The invention relates to a method for controlling a brushless electric motor according to the preamble of patent claim 1.
Brushless DC motors for applications in fans, operating with or without a closed-loop control, are known.
The rotational speed of a brushless DC motor that does not have a closed-loop control is dependent on the supply voltage (see
If other parameters and environmental influences are ignored, the table below shows how a change in rotational speed, caused by an increase in the supply voltage, of an uncontrolled electric motor that is used as a fan motor can affect other motor or fan parameters:
Thus at higher rotational speeds the fan delivers more air which, however, is normally not required by the user since the fan is designed to deliver a sufficient amount of air, for the entire supply voltage range. What is more, as the rotational speed increases, not only does the load on the motor increase but also the noise of the fan. This increase in load not only means an increase in energy consumption, but also increased motor self-heating, which in turn has a negative impact on the useful life of the bearing system.
For motors that have a closed-loop control, the output power remains constant (
If, in the above example, the voltage drops from a nominal value of 12 V to 8.4 V (−30%), the input current of the power electronics rises by approx. 43%. The power loss, i.e. the thermal load on the power semiconductors of the commutation electronics, also increases to a corresponding extent.
One way of avoiding this problem, in addition to having a closed-loop control, is to have the supply voltage measured by the motor control and to then make an appropriate adjustment to the PWM ratio. This, however, goes to increase the costs of the sensors, which means that this kind of solution is generally out of the question for low-cost motors due to the expenses involved.
The object of the invention is to provide a method for controlling a brushless electric motor in which neither a reduction nor an increase in operating voltage produces an increase in the load on the components of the motor.
This object has been achieved according to the invention by the characteristics outlined in patent claim 1. A brushless motor according to the invention is provided in claim 3.
The solution is based on a motor having a closed-loop control in which, however, a control reserve in the low voltage range has been foregone in accordance with the prior art.
Alongside its possible application as a pump motor, another particular application for the electric motor according to the invention is as a fan motor.
According to the invention, a motor control preferably based on pulse width modulation (PWM) is used, the motor operating with a closed-loop control and being rated so that the motor just achieves its specified nominal speed with nominal load at nominal supply voltage. Should, in this event, the supply voltage rise above the nominal value, the control prevents the speed from increasing.
If the supply voltage falls below the nominal voltage at full motor load, the control rapidly reaches the maximum PWM ratio. From this point on, the PWM ratio cannot be increased any further, which is why the input current cannot rise any further either. Instead, due to the reduced voltage and the consequent decline in current consumption, the motor rotates more slowly and the motor load also decreases (power loss).
An embodiment of the invention is compared to the prior art and described in more detail below on the basis of the drawings.
In FIGS. 1 to 3, the rotational speed is shown as an unbroken line, the current as a dotted line and the power as a dashed line, plotted against the voltage. The parameters have been normalized to the nominal speed, the nominal current and the nominal power as well as the nominal voltage.
This results in an increase in energy consumption, higher losses in the motor and in the commutation electronics, as well as an increase in flow noise, particularly when the supply voltage is higher than the nominal voltage (1.0).
The diagram of the relative speed, motor current and input power of a motor according to the invention depicted as a function of the relative supply voltage in accordance with
It can also be seen from
If the supply voltage is reduced, the closed-loop control increases the PWM ratio.
In many cases, the motor rating according to the invention can be realized by means of an appropriate winding design. This means that the magnetic circuit and the commutation electronics need not be changed. One possible way of arranging the winding design according to the invention is as follows:
For example, a fan with a prototype motor having a known winding design (wire diameter do, number of windings per tooth No) is examined. The fan can either be built into the actual application or into a test rig that has a similar current-resistance characteristic as the actual application. In this case, the nominal operating point (air flow and pressure) is achieved at the nominal speed. The supply voltage at which the motor just reaches this nominal speed can be determined through experimentation. When this limiting value ULimit is known and the nominal supply voltage is UNom, the winding according to the invention can be easily calculated by:
Wire diameter:.
Number of windings:
| Number | Date | Country | Kind |
|---|---|---|---|
| 10 2004 019 004.6 | Apr 2004 | DE | national |