The invention relates to a method for controlling a surface drive for a watercraft.
In fast, motor-driven watercrafts that are equipped with a surface drive, the propeller shaft can pivot in all directions around a hinge point with the drive shaft from the motor or the transmission. The motor and transmission are located in the ship's hull. The depth of immersion of the propeller and with it the conversion of drive energy into thrust is changed by pivoting the propeller in a vertical plane parallel to the longitudinal axis of the watercraft. This pivoting of the propeller shaft in the vertical plane is called trimming, and the amount of pivoting is called the trim angle. At higher headway speeds and with the propeller only partially immersed, the surface drive reaches its best efficiency. The optimal trim angle thus depends on the headway speed of the watercraft and is approached manually in ordinary watercraft, with the corresponding inaccuracy. In addition, manual trimming burdens the boat's skipper in addition to his other tasks, which likewise makes it difficult to set the optimal trim angle.
The prior art describes an automatic trim control for a surface drive that automatically adjusts the trim angle as a function of the particular operating range. The operating ranges are defined by the position that the watercraft assumes in the water at different speeds.
The underlying purpose of the invention is to specify a method for the optimized automatic setting of the trim angle of a surface drive for a watercraft for the particular operating range.
A surface drive for a watercraft consists of at least one drive unit in which a propeller shaft with a propeller is guided in a thrust tube. The thrust tube is fastened to pivot in the hinge point at the stern of the watercraft, and the propeller shaft has a hinged connection to the drive shaft in the hinge point. The drive shaft is either driven directly by a motor placed inside a hull of the watercraft, or by an output shaft of a transmission downstream from the motor. Pivoting of the thrust tube and with it the propeller shaft in a vertical plane parallel to the longitudinal axis of the watercraft is called trimming, where the trim angle is a measure of the pivoting and is limited by an upper and a lower trim boundary. The depth of immersion of the propeller is set with the trimming motion. The direction of travel of the watercraft is controlled by pivoting the thrust tube in the horizontal plane, where the measure of this pivoting is the steering angle that varies between a left and a right maximum steering angle. To execute the pivoting motions in both planes, the thrust tube is actuated by a trim actuator mechanism and a steering actuator mechanism, both of which in turn are controlled by an electronic control unit. The surface drive is operated in at least two different operating ranges so that adjustment of the trim angle is regulated automatically in at least one operating range in a closed control loop with recognition of preset control parameters. In at least one other operating range, the trim angle is automatically controlled in a manner established for this operating range depending on preset control parameters. The automatic change of the trim angle is hereinafter referred to as automatic trimming, and the different manner of trimming depending on the operating range is called the trimming mode.
The advantages of automatic trimming include, among others, the setting of an optimal trim angle for each situation, so that operation can occur with the best thrust or the most favorable efficiency for the given requirements, and the skipper's workload can be reduced.
The operating ranges in one possible embodiment are defined by an upper and a lower rotational speed limit or a headway speed limit proportional to them based on the speed of the watercraft. The rotational speed limit and the headway speed limit are programmed into the electronic control unit.
In an advantageous variant of the method, changing operating ranges causes the trim modes in question to automatically change to the particular rotational speed limit or headway speed limit.
In one variant, the trim angles set as a function of the rotational speed or the headway speed are taken from a value table or a characteristic stored in the electronic control unit, with intermediate values being interpolated. Another variant for at least one operating range is the detection of the rotational speed or the headway speed, with which the particular trim angle is calculated in the electronic control unit by means of a function stored there.
In addition, a desired rotational speed newly input via a manual data input, for example a control panel, is recognized as such only when it exceeds a hysteresis range that has been established based on operational rotational speed variations.
In a refinement of the invention, all rotational speeds of the drive are proportional to one another as long as no slippage occurs. In special cases when using a stepped gear transmission in a drive train, the rotational speed of the drive or propeller proportional to the rotational speed of the motor can be calculated with regard to the transmission ratio.
In a special embodiment of the invention, in at least one operating range with accelerated drive, the changeover and with it the change of control mode changes to a faster operating range with a higher rotational or headway speed limit than is the case during deceleration, when the faster operating range reverts again to the slower. The headway speed, which constitutes an important parameter in the method, is calculated from the rotational speed of the propeller shaft or from the rotational speed of the motor proportional to it or is detected by a measuring device, which can be, for example, an ultrasound sensor, a radar system, a pitot tube, or a satellite- and/or radio-assisted navigation or position-determining system.
In an advantageous refinement there is, in addition to the at least one controlled operating range and the at least one regulated operating range, a slow-travel range for slow travel, for example while maneuvering. This slow-travel range extends from a first rotational speed limit that is determined by the idling speed of the motor, to a second rotational speed limit. In this operating range, automatic trimming is passive, which is not equivalent to manual operation, since although the trim angle can be changed manually by the skipper as desired without intervention by the electronic control unit into the trim actuator mechanism, the automatic control mode for the second operating range is automatically activated, however, by the automatic trimming which is running in the background, if the second rotational speed limit is exceeded and with it the slow-travel range is exited.
In another embodiment, the surface drive is operated in four operating ranges, with a second operating range following with the increase in rotational speed in the slow-travel range beyond the second rotational speed limit, a third operating range following beyond a third rotational speed limit, and a fourth operating range following beyond a fourth rotational speed limit. Automatic trimming in the second and third operating ranges is controlled. In the fourth operating range, in which the drive reaches a defined maximum rotational speed, or the watercraft reaches its maximum headway speed, the trim angle is automatically set in a closed control loop.
In another variant, the trim angle varies within the trim range between an upper trim limit that specifies the angle of the thrust tube in which the propeller reaches its position of maximum height, and a lower trim limit that specifies the angle of the thrust tube in which the propeller assumes its lowest achievable position. Between these limits, there is a defined central position, which does not have to necessarily be the mathematical average of the trim limits.
In another embodiment of the invention, the trim angle is changed automatically from an arbitrary position that it assumed in the preceding operating range to the lower trim limit of the trim range when the changeover from the slow-travel range to the second operating range occurs with increasing rotational speed or headway speed.
In addition, adjustment of the trim angle to the lower trim limit can take place in the same way when changing from the third to the second operating range with a reduction of the rotational speed or the headway speed.
In one variant the trim angle is brought from the lower trim limit to the defined central position when a third operating range is reached from the second operating range.
In one variant the trim angle is shifted from the regulated position set for it in the fourth operating range to the central position of the third operating range, if the rotational speed or the headway speed drops and the fourth operating range changes to the third operating range.
In an advantageous refinement, it is possible for the skipper, especially in the third operating range in which the watercraft finds itself in a slipping state, to manually change the trim angle out of the central position within a correction range preset in the electronic control unit. This makes it possible to adapt to external influences, for example such as sea conditions. As in the slow-travel range, automatic trim control in this case remains active in the background and automatically changes the automatic trim mode if a third rotational speed limit is exceeded.
If the correction range is exceeded in the third operating range, the automatic trim control in an advantageous further embodiment of the invention switches to a first standby operating mode and adjustment of the trim angle is then possible only manually.
Termination of the automatic operating mode by the skipper, by means of a trim switch for example, is optionally possible.
In another variant, a manual reset, by means of a reset switch for example, is necessary for returning to automatic trim control.
In the changeover from the third to the fourth operating range by increasing the rotational speed or the headway speed of the watercraft, the trim angle set in the third operating range is first retained. Furthermore, when changing from the third to a fourth range in which the watercraft reaches its maximum headway speed and the motors are under full load, the operating mode automatically changes from controlling the trim angle to regulating the trim angle in a closed control loop. In this case the trim angle is changed so that a defined maximum rotational speed or maximum headway speed is reached.
In a special refinement, there are at least two drive units on a watercraft. Each drive unit in this case is driven by its own motor.
In one possible embodiment, in the operating ranges in which the trim angle is controlled according to a preprogrammed value table or function, the average of the rotational speeds of all of the drive units is calculated in the electronic control unit, and this average is taken as a rotational speed signal. In the same way, the trim angles of all of the drive units are adjusted synchronously in the controlled operating ranges, i.e. the trim angles are all the same in magnitude and direction.
In a further embodiment of the method pursuant to the invention with multiple drive units the trim angles of the individual drive units are—in the fourth operating range, in which the drive motors are under full load and at maximum motor rotational speed and the watercraft reaches its maximum headway speed—regulated independently of one another in a closed control loop so that the rotational speeds of the drive units reach a defined rotational speed. The difference between the rotational speeds of multiple drive units should advantageously not exceed a defined spread in this case.
As an alternative to this, the headway speed of the watercraft can be regulated by changing the trim angle to its maximum value.
In another variant, the maximum possible steering angle of the drive unit, i.e. the maximum possible lateral swing of the thrust tube to steer the watercraft, is reduced with increasing rotational speed or headway speed by the electronic control unit independently of the automatic operating mode of trimming. This happens in a possible variant according to a value table in which the steering angle in question is assigned a given rotational speed, or in another refinement according to a function of the rotational speed or the headway speed. Unstable operating conditions when negotiating curves are avoided by reducing the maximum achievable steering angle with rising headway speed or rotational speed, particularly at high headway speeds and with the narrow curve radii resulting from large steering angles.
Below the maximum steering angles that can be set are changeable as a function of the rotational or headway speed, which also cannot be exceeded during manual trimming, one variant features in the fourth operating range—where maximum headway speed is reached—a first limiting steering angle being additionally set in the electronic control unit, which when exceeded, the electronic control unit switches to a second standby operating mode and the trimming has to be performed manually until a second limiting steering angle is no longer exceeded and the automatic operating mode is thereby reactivated.
Another reason for influencing the automatic trimming by automatic limitation of the steering angle, particularly in surface drives that consist of at least two drive units, is the increasingly sloped position of the watercraft at high headway speed and a narrow curve radius that is produced by enlarging the steering angle. Beyond a given slope, for example the automatic trimming that regulates the trim angle in a closed control loop in the fourth operating range cannot move the thrust tube and with it the position of the propeller of the drive unit on the outside of the curve further down, so that the propeller on the outside of the curve rises out of the water while the propeller on the inside of the curve is deeply immersed. In one variant, automatic limitation of the steering angle variant prevents this operating state and/or allows manual correction of the trim angle after exceeding the first limiting steering angle in the second standby operating mode.
In another refinement of the method for a watercraft that has at least one trimming flap on each side of the transom, the trimming flaps are mounted on the transom to pivot around a trim angle around a parallel line to the transverse axis of the watercraft. Depending on the operating range, the trimming flaps are operated in a manner provided for them, with the motion of the trimming flaps, like that of the drive unit, being controlled by the electronic control unit and with the trimming flaps on both sides moving synchronously in direction and in trimming flap angle. This means that in the automatic operating mode, the left and right trimming flap angles are always the same. The trimming flaps are actuated by trimming flap actuators, for example hydraulic cylinders. When the trimming flaps are moved, this always occurs toward the trim angle of the drive unit.
The operation of the trimming flaps is preferably controlled automatically in all operating ranges, while the trimming flaps are adjusted manually in the slow-travel range.
In another refinement, the trimming flaps assist the trimming motion drive unit in the second operating range, in which the stern of the watercraft has to be raised during acceleration to arrive at the slip condition that characterizes the third operating range. The trimming flap angles assume their lower end value corresponding to the trim angle of the drive unit.
In one variant the trimming flap angles assume the range of a central position in the third operating range just like the trim angle of the drive unit, but can be adjusted manually in the same direction within a preset correction range. The correction range in this case is limited by an upper and a lower trimming flap correction limit.
In the changeover from the third to the fourth operating range, the trimming flap angles in another refinement pursuant to the invention remain at the last value that they had assumed in the third operating range and, in contrast to the trim angle of the drive unit, they are not regulated. In the fourth operating range, in which the trim angle is regulated in a closed control loop to reach the maximum rotational speed or the highest headway speed, it is possible to adjust the trimming flap angles manually within a preset correction range as in the third operating range.
In the event of manual correction of the trimming flap angle beyond the preset correction range, the electronic control unit optionally switches to the first standby operating mode in both the third and fourth operating ranges, in which only a manual change of the trim angle and the trimming flap angle remains possible.
In one variant automatic trimming flap control can be turned off manually, for example, by activating a trimming flap switch, so that the trimming flaps can be operated manually.
Adjustment of the trim angle of the drive unit and the thrust tube with the propeller shaft mounted in it to the lower limit of the trimming range is possible in manual operation as well as in the automatic operating mode, in particular in the second operating range. In this case the possibility exists of contacting the bottom of the waterway and thus the propeller or the propeller shaft as well as the thrust tube. In a particular refinement, to protect against hitting the bottom in at least the two operating ranges mentioned, a first vertical distance from a defined fixed point on the watercraft to the bottom is ascertained by a measuring device and is compared in the electronic control unit with a second vertical distance from the lowest point on the propeller to the fixed point. If downward adjustment of the trim angle threatens to make the second distance, plus an optional safety margin, exceed the first distance, the trim angle is automatically limited downward and the drive unit and the propeller can be moved no further downward.
In a variant of the preceding refinement, the trim angle is automatically reduced in the event that the water depth decreases while traveling in any operating range thereby correcting any possible exceeding of the first vertical distance by the second vertical distance.
An example of embodiment of the invention is shown in the drawing and is described in detail below.
The Figures show:
Using a flow chart,
The diagram in
It is possible to return to the automatic operating mode only by a manual reset, for example such as actuating a reset switch, whereby the trim angle τ again assumes the central position τ_N=0°. When the rotational speed drops in the third operating range S3 (Line E-J), the automatic operating mode of the second operating range S2 comes into play only beyond a rotational speed n_32 that is lower than the rotational speed n_23 (Line E-J-K). This hysteresis prevents constant interchange of operating modes in the changeover range.
If the limiting headway speed n_34 is exceeded with an increase of rotational speed in the third operating range S3, the trim angle τ stays in the last value set in the third operating range S3 (Point F or H), and is changed in a closed control loop with the activation of the operating mode for the fourth operating range S4 so that a maximum rotational speed n_40 and maximum headway speed v_max are reached (Point 1). With an arrangement of multiple drive units 140, each of which is driven by its own motor 102 through its own drive train 125, the trim angles τ are adjusted independently of one another to reach a maximum rotational speed n_40, with the rotational speeds of the individual drive units 140 being regulated so that they lie together in a narrow tolerance range, for example of 10 rpm. If the skipper attempts to adjust the trim angle τ manually, the first standby operating mode is activated. In addition to automatic setting of the trim angle, an automatically increasing limitation of the maximum achievable steering angle σ_L=f(n, v) is possible through the rotational speed n or the headway speed v, to prevent critical states when negotiating curves. In addition to the trim angle τ, the steering angle σ is also plotted on the ordinate of the diagram. The broken line reflects a possible curve of the maximum achievable steering angle σ_L versus the rotational speed n or the headway speed v. The maximum steering angle σ_L that can be set still reaches its maximum value in the slow-travel range S1, and is reduced starting with the operating range S2 according to a function or a value table stored in the electronic control unit, within which values can be interpolated. It is also impossible to exceed the maximum achievable steering angle σ_L with the automatic trimming turned off or in the first standby operating mode. In the fourth operating range S4, in which the maximum steering angle σ_L that can be set is the smallest because of the high rotational speed and headway speed, a first limiting steering angle σ_41 lies below the maximum achievable steering angle σ_L. Exceeding the first limiting steering angle σ_41 first triggers an optical and/or acoustic signal for the skipper, and as the steering angle σ continues to increase, the electronic control unit switches into the second standby operating mode in which the automatic regulation of the trim angle is turned off and trimming again has to be done manually until the steering angle σ is reduced to such an extent that it is again smaller than the second limiting steering angle σ_42. The two limiting steering angles σ_41 and σ_42 can be the same. To avoid constant switching back and forth, a hysteresis is provided for, and the first limiting steering angle σ_41 for being exceeded is larger than the second limiting steering angle σ_42, dropping below which again activates the automatic regulation of the trim angle τ in the fourth operating range S4. In the example described, the limiting steering angles σ_41 and σ_42 in the fourth operating range S4 due to its brevity are constant. The same is true of the maximum possible steering angle σ_L. Of course a variable curve depending on the rotational speed n or the headway speed would also be conceivable.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 048 058.1 | Oct 2007 | DE | national |
This application is a National Stage completion of PCT/EP2007/063437 filed Dec. 6, 2007, which claims priority from German patent application serial no. 10 2007 048 058.1 filed Oct. 5, 2007.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/063437 | 12/6/2007 | WO | 00 | 7/22/2010 |