This application is a 35 U.S.C. § 371 National Stage Application of PCT/EP2016/071495, filed on Sep. 13, 2016, which claims the benefit of priority to Serial No. DE 10 2015 119 085.0, filed on Nov. 6, 2015 in Germany, the disclosures of which are incorporated herein by reference in their entirety.
The disclosure relates to a method for controlling the actuation angle during the reversing of a vehicle combination, comprising a tractor motor vehicle having at least one trailer of the type defined herein.
There are a multiplicity of methods for controlling the actuation angle between the trailer and tractor vehicle or tractor motor vehicle during the reversing of a vehicle combination having a trailer. These methods generally determine a target wheel steering angle from a predefined target actuation angle between the trailer and the tractor vehicle using a suitable control algorithm, in order to obtain the target actuation angle. This target wheel steering angle is applied by means of a suitable steering system. There are both methods in which the front wheels of the tractor vehicle are steered and methods in which the rear wheels of the tractor vehicle are steered.
According to the methods described in EP 2 439 127 A1, US 2005/000 738 A1 and EP 1 810 913 A1 the driver of a vehicle combination having a trailer is assisted during reversing in that said driver predefines the target actuation angle between the tractor vehicle and the trailer, and said target actuation angle is applied by the steering system.
During the reversing of one or more trailers, small changes in the steering wheel angle can give rise to large changes in the actuation angle and very high actuation angle speeds or rates of change of the actuation angle. The higher the vehicle speed, the more pronounced is this behavior. The higher the actuation angle speed, the faster the steering actuator has to react with the steering movements. Since the steering actuator is physically limited in its actuating speed, the steering actuator can no longer control the actuation angle in a stable fashion starting from a certain vehicle speed or actuation angle speed, which can give rise to unstable states extending as far as a collision of the vehicle and the trailer (jackknifing). Therefore, situations can occur in which the steering system cannot follow the desired target steering lock or target wheel steering angle. This can lead, for example, to the desired target steering angle being obtained only after a relatively large distance, or even to a situation in which the control error of the articulation angle becomes larger and not smaller, and therefore the control or the control device used for this purpose becomes unstable.
The present disclosure is therefore based on the object of providing a method for controlling the actuation angle of the type mentioned at the beginning which can be used reliably even at relatively high speeds, in particular permits stable actuation angle control.
According to the disclosure this object is achieved by means of the features specified herein.
According to the disclosure, a method is proposed for controlling the actuation angle during the reversing of a vehicle combination, comprising a tractor motor vehicle having at least one trailer by means of a first actuation angle controller which determines a target steering lock of at least one steerable wheel of the tractor motor vehicle and controls the same using a steering actuator of the tractor motor vehicle, in order to obtain a predefined target actuation angle of the vehicle combination, wherein the rate of change of the actuation angle is limited in such a way that the maximum available actuation speed of the steering actuator is sufficient for the movement of the at least one trailer to follow the target actuation angle, in particular over a predefined speed range of the vehicle combination.
In order to permit stable actuation angle control at rising speeds, in the proposed method the actuation angle speed or the rate of change of the actuation angle is limited. The actuation angle speed is limited here in such a way that the actuating speed of the steering actuator is sufficient to stabilize the trailer movements, or apply them in a stable fashion, in particular over a predefined speed range of the vehicle combination. The predefined speed range of the vehicle combination can be, for example, 1 km/h to 10 km/h here but can also be the entire possible speed range of the vehicle combination. In particular, even at relatively high speeds or rising speeds, e.g. >20 km/h, stable control is to be reliably possible. In an advantageous way it is also to be possible to drive at a constant speed, in particular at relatively high speeds or vehicle speeds.
The target actuation angle can be limited in terms of its rate of change, in particular as a function of the speed of the vehicle combination, before said target actuation angle is transferred to the first actuation angle controller.
The actuation angle speed is limited in that the target actuation angle is limited in its rate of change before the target actuation angle is transferred to an existing actuation angle controller. This results in a maximum target actuation angle speed. The existing actuation angle controller therefore ensures there is a limited actuation angle speed. It is advantageous if the maximum rate of change of the target actuation angle can be set as a function of the vehicle speed.
It is advantageous if at least a second controller, in particular an actuation angle speed controller, is connected in parallel with the first articulation angle controller.
Therefore, an actuation angle speed controller is connected in parallel with an existing actuation angle controller. Both controllers can act on the steering actuator.
The target steering lock or actuating command for the steering actuator can be formed from addition or summing of a first target steering lock of the first actuation angle controller and of a second target steering lock of the second controller.
The steering lock (target steering lock) which is requested by the steering actuator can consequently be formed by summing the target steering lock of the existing actuation angle controller and the target steering lock of the actuation angle speed controller or of the second controller. The actuation angle speed controller can ensure that the actuation angle speed remains within the predefined limits. The second controller or the actuation angle speed controller can be, for example, a PID controller.
It is advantageous if the second controller is active as soon as the rate of the change of the actuation angle exceeds a predefined limiting value.
The second controller or the actuation angle speed controller can become active as soon as the actuation angle speed exceeds a predefined limit. For this purpose, for example the negated actuation angle speed can be adjusted through a dead zone or plus/minus limit and then transferred as a control error to the actuation angle speed controller, in particular a PID controller.
The at least one predefined limiting value can be set as a function of the speed of the vehicle combination.
It is advantageous if the limit for the dead zone of the actuation angle speed can be set as a function of the vehicle speed. The predefined limiting value can be here an absolute value which is provided in each case with positive and negative signs which form the dead zone.
In one advantageous refinement of the disclosure, a cascade controller can be used as the first actuation angle controller.
The actuation angle is therefore controlled by means of a cascade controller. In this cascade structure, the angle and the speed can be controlled.
In an advantageous fashion, in the cascade controller a target actuation angle speed can be determined from a control difference between the target actuation angle and the actual actuation angle or the actuation angle using a first partial controller of the cascade controller, which target actuation angle speed is limited to predefined limiting values, after which a control difference is formed between the limited target actuation angle speed and the rate of change of the actual actuation angle and is transferred to an input of a second partial controller of the cascade controller which calculates the target steering lock.
In such a cascade controller, a target actuation angle speed is firstly calculated from the control difference of the actuation angle, that is to say the difference between the target actuation angle and the actual actuation angle using a controller, in particular a PID controller. The target actuation angle speed is subsequently limited to predefined limits or limiting values. A target steering lock or an actuating command for the steering actuator is calculated from the control difference between the limited target actuation angle speed and the actual actuation angle speed using a further controller, in particular PID controller. It is advantageous if the predefined limiting value is for the target actuation angle speed can be set as a function of the speed of the vehicle combination.
It is very advantageous if the target steering lock of the first actuation angle controller is limited dynamically by means of a model for an upper limit and a lower limit of the target actuation angle speed. In this context, the upper limit and the lower limit of the target articulation angle speed can be set as a function of the speed of the vehicle combination.
As a result of these measures, the target steering lock of an actuation angle controller is dynamically limited, with the result that no actuation angle speeds which are above the predefined limiting values or the predefined limits are produced. The upper and lower limits for the target steering lock are calculated from the upper and lower limits for the target actuation angle speed and driving state variables using a model. For example the following can be selected: lower limit of the target actuation angle speed=−upper limit of the target actuation angle speed. The calculation can be carried out by means of the following formulas:
where:
δmax is the upper limit for the steering lock;
δmin is the lower limit for the steering lock;
{dot over (Y)}max is the predefined upper limit for the target actuation angle speed;
{dot over (Y)}min is the predefined lower limit for the target actuation angle speed;
v is the vehicle speed;
γ is the actuation angle;
I1 is the distance between the axles of the tractor vehicle;
I2 is the distance between the trailer hitch and the centerpoint of the wheels of the trailer; and
I12 is the distance between the rear axle of the tractor vehicle and the trailer hitch.
It is advantageous if the limit for the actuation angle speed can be set as a function of the vehicle speed or the speed of the vehicle combination. The vehicle speed for the model can be the actual vehicle speed or the target vehicle speed or a combination of both. The actuation angle for the model can be the actual actuation angle or the target actuation angle or a combination of both. The model is used to calculate, as it were, which absolute value of the manipulated variable is available, wherein only this manipulated variable is also used. As a result, direct protection against excessively high actuation angle speeds is advantageously provided. As a result, it is possible to apply the desired actuation angle with the maximum possible performance, wherein a situation in which instabilities or other problems can occur can be effectively avoided.
A multiplicity of electronic power steering devices, in particular an EPS (electric power steering) steering system or an AFS (active front steering) steering system but also steer-by-wire steering systems are possible as steering actuators.
Therefore, in order to limit the actuation angle speed the following refinements according to the disclosure are proposed:
The proposed refinements of the method according to the disclosure can, of course, also be used in combination with one another.
Advantageous refinements and developments of the disclosure can be found in the dependent claims. Exemplary embodiments of the disclosure are described in basic form below with reference to the drawing, in which:
Functionally identical elements are provided with the same reference symbols in the figures.
The predefined limiting values can be set here as a function of the speed v of the vehicle combination 1 (not illustrated in
The calculation of the model 9 can be carried out by means of the following formulas:
Here:
δmax is the upper limit for the steering lock;
δmim is the lower limit for the steering lock;
{dot over (Y)}max is the predefined upper limit for the target actuation angle speed {dot over (Y)}soll;
{dot over (Y)}min is the predefined lower limit for the target actuation angle speed {dot over (Y)}soll;
v is the vehicle speed;
γ is the actuation angle;
I1 the distance between the axles of the tractor vehicle;
I2 is the distance between the trailer hitch and the centerpoint of the wheels of the trailer; and
I12 is the distance between the rear axle of the tractor vehicle and the trailer hitch.
The refinements of the method according to the disclosure which are described in
1 vehicle combination
2 tractor motor vehicle
3 trailer
4 trailer hitch
5,5a,5b wheels
6, 6.1 first actuation angle controller
7 actuation angle speed controller
8 dead zone
9 model
10 limiting means
V (actual) vehicle speed or speed
δ wheel steering angle
γ actuation angle, actual actuation angle
I1, I2, I12 lengths
Ysoll target actuation angle
δsoll, δsoll_3 target steering lock
δsoll_1 first target steering lock
δsoll_2 second target steering lock
δmax,up upper limit of steering lock
δmin,lo lower limit of steering lock
Ydiff control difference, actuation angle difference
{dot over (Y)}diff actuation angle speed difference
{dot over (Y)}soll target actuation angle speed
{dot over (Y)}max upper limit for the actuation angle speed
{dot over (Y)}min lower limit for the actuation angle speed
u input signal
y output signal
Number | Date | Country | Kind |
---|---|---|---|
10 2015 119 085 | Nov 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/071495 | 9/13/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/076539 | 5/11/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4455035 | Ivony | Jun 1984 | A |
6042196 | Nakamura | Mar 2000 | A |
20040021291 | Haug | Feb 2004 | A1 |
20050000738 | Gehring et al. | Jan 2005 | A1 |
20080312792 | Dechamp | Dec 2008 | A1 |
20090306854 | Dechamp | Dec 2009 | A1 |
20100222964 | Dechamp | Sep 2010 | A1 |
20130179038 | Goswami | Jul 2013 | A1 |
20150149040 | Hueger | May 2015 | A1 |
20150197278 | Boos | Jul 2015 | A1 |
20150198949 | Boos | Jul 2015 | A1 |
20150360718 | Boos | Dec 2015 | A1 |
20160031482 | Lavoie | Feb 2016 | A1 |
20170320520 | Greul | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
10 2005 043 467 | Mar 2007 | DE |
10 2005 043 468 | Mar 2007 | DE |
10 2005 043 470 | Mar 2007 | DE |
10 2014 201 841 | Aug 2014 | DE |
10 2014 002 856 | Aug 2015 | DE |
10 2014 003 779 | Sep 2015 | DE |
1 810 913 | Jul 2007 | EP |
2 439 127 | Apr 2012 | EP |
Entry |
---|
International Search Report corresponding to PCT Application No. PCT/EP2016/071495, dated Nov. 25, 2016 (German and English language document) (5 pages). |
Number | Date | Country | |
---|---|---|---|
20180290685 A1 | Oct 2018 | US |