Method for controlling bulk supply of material to integral pneumatic dispenser

Information

  • Patent Grant
  • 6253799
  • Patent Number
    6,253,799
  • Date Filed
    Friday, June 30, 2000
    25 years ago
  • Date Issued
    Tuesday, July 3, 2001
    24 years ago
Abstract
A method is disclosed for reloading a plurality of shotmeters supplying fluid material to a plurality of robots from a bulk supply. The method is capable of alternating which of the shotmeters is being reloaded at any given time. This greatly reduces the capacity requirements of the bulk supply. The method includes the steps of activating one of the shotmeters to define a primary shotmeter. The material in the primary shotmeter is then dispensed. Once the primary shotmeter is emptied, the other of the two shotmeters associated with the robot is activated and becomes the primary shotmeter. This shotmeter then dispenses the material. A request is forwarded to the system programming logic controller to reload the emptied shotmeter. Once approval is received, the emptied shotmeter is reloaded. The system programming logic controller only allows the emptied shotmeter to reload when the emptied shotmeter is the only one of the plurality of shotmeters relying on the bulk supply at that time.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The invention relates to a method for controlling the bulk supply of material to be dispensed through a robot system. More specifically, the invention relates to a method for controlling the reloading of material into the bulk supply system in a manner that reduces the amount of material stationed in the bulk supply system.




2. Description of the Related Art




The manufacture of goods can often require the application of viscous materials. These materials may be used to paint, seal, coat, adhere, weld and the like. The material must be applied in a uniform and automated fashion. In many instances, the material is directed by a robot that has been programmed to apply materials to the items being manufactured or treated.




In many instances, several applicators are used for a particular product coating system. All of the applicators require material to operate. A standard deployment is shown as prior art in FIG.


1


. Each of the six robots


11


shown require material from the bulk system, generally shown at


13


. The rate at which the three robots and shotmeter pairs require material mandates at least three drums of material be stored adjacent thereto as bulk supply. Each of these drums requires two pumps to supply material at the rate demanded by the robots. In the embodiment shown in

FIG. 1

, each drum can supply 4.6 gallons per minute and each robot station requires 6.6 gallons per minute. Therefore, two drums must be active all the time with one inactive drum waiting as a stand by to the others.




This arrangement is costly due to the redundancy of parts. The drum and pump combinations are substantial investments due to their required size and robustness. The viscosity of the material being pumped can be quite high requiring the pumps to be heavy, rugged and costly. It is also costly because so much floor space is taken up to accommodate the drums.




SUMMARY OF THE INVENTION




A method for reloading a plurality of shotmeters supplying fluid material to a plurality of robots from a bulk supply includes the step of activating one of the shotmeters to define a primary shotmeter. Once activated, the method dispenses the material from the primary shotmeter. The method then determines when the primary shotmeter becomes empty. The method activates the other of the shotmeters to continue dispensing the material. A request is then forwarded to reload the primary shotmeter that has been emptied. Once approval is received, the primary shotmeter is reloaded but only when the primary shotmeter is the only one of the plurality of shotmeters relying on the bulk supply at that time.











BRIEF DESCRIPTION OF THE DRAWINGS




Advantages of the invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:





FIG. 1

is a schematic view of a prior art bulk supply configuration;





FIG. 2

is a schematic view of one embodiment of a bulk supply system incorporating the inventive method; and





FIGS. 3A and 3B

are a flowchart of one embodiment of the inventive method.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)




Referring to

FIG. 2

, one assembly incorporating the inventive method is generally indicated at


10


. The assembly


10


includes two sets of robots


12


,


14


. The first set of robots


12


includes three robots


16


,


18


,


20


. The second set of robots


14


includes robots


22


,


24


,


26


. Each of the robots


16


-


26


includes a shotmeter


28


,


30


,


32


,


34


,


36


,


38


. The shotmeters


28


-


38


are configured to be dual shotmeters. Such a configuration of dual shotmeters is disclosed in a copending patent application of common assignment and cofiling herewith (attorney docket number 0602.00001). This patent application is hereby expressly incorporated by reference. Each of the shotmeters


28


-


38


have been labeled with one of the initials A and R to represent that each shotmeter


28


-


38


includes a shotmeter that is active and a second shotmeter that is being reloaded. These two states or conditions will be discussed in greater detail subsequently.




Each of the shotmeters


28


-


38


is fed material (not shown) through an inlet line


40


. The inlet line


40


branches out to each of the shotmeters


28


-


38


. The inlet line


40


receives its material from one of two drums


42


,


44


. The drums


42


,


44


, like the shotmeters


28


-


38


, cooperate in that one drum


42


is in active mode and the other drum


44


is in standby mode. Both of the drums


42


,


44


contain the material that is received by the shotmeters


28


-


38


. When the active drum


42


is emptied, the standby drum


44


pumps the material to the shotmeters


28


-


38


through the inlet line


40


.




Each of the drums


42


,


44


include two pumps


46


,


48


,


50


,


52


. The pumps


46


-


52


pump the material from the drums


42


,


44


through the inlet line


40


to the shotmeters


28


-


38


. The pump pairs


46


,


48


and


50


,


52


are capable of pumping 4.6 gallons per minute of the material that is going to be dispensed through the robots


16


-


26


. The pump pairs


46


,


48


and


50


,


52


are more than capable of supplying the requisite amount, 2.2 gallons per minute in the embodiment shown in

FIG. 2

, to supply the robots


16


-


26


with sufficient material to apply the material to the parts. The reason a single drum


42


,


44


having two standard pumps


46


,


48


and


50


,


52


are capable of supplying the requisite amount of material to each of the robots


16


-


26


is that the inventive method reduces the required amount of material at any given time. It should be appreciated by those skilled in the art that the method may be modified depending on the capabilities and capacities of the pumps. If, as in the example above, the pump pairs


46


,


48


and


50


,


52


are capable of pumping 4.6 gallons per minute, it may be appreciated that the method may allow two shotmeters


28


-


38


to be reloaded at the same time because doubling the 2.2 gallons per minute requirement will still be within the capacity of the pump pairs


46


,


48


and


50


,


52


.




Referring to

FIGS. 3A and 3B

, a flowchart of the inventive method is generally indicated at


54


. Reference to shotmeters


28


-


38


in

FIGS. 3A and 3B

have been changed to “meter” for purposes of brevity. Therefore, the remainder of this disclosure will refer to the shotmeters


28


-


38


as meters


28


-


38


.




The method starts at


56


with both meters for each robot


16


-


26


full of material. One of the meters


28


-


38


is activated and defined as a primary meter. The material in the primary meter is then dispensed at


58


. Once emptied at


60


, the primary meter is tested to determine whether it has emptied at


62


. This is done by determining whether the inactive meter has been reloaded. Initially, the inactive meter is reloaded because each robot


16


-


26


starts with both meters full. After the initial cycle, this test of the inactive meter becomes more important. If the inactive meter is full or reloaded, its status is switched from inactive to active at


64


. By switching the status of the meters, the robots


16


-


26


are able to continue dispensing material without having to stop production to reload a single meter.




The newly inactivated meter, previously the primary meter, has been substantially emptied. This meter must be reloaded so that the robots


16


-


26


may continue to operate. According to the method


54


, a request must be forwarded to the robot controller (not shown) to reload the inactive meter. The step is performed at


66


. If the request to reload is approved at


68


, the inactive meter is reloaded at


70


. The instruction to reload the inactive meter at


72


is only given by a system programming logic controller


74


when the inactive meter is the only one of the plurality of meters that is relying on the bulk supply of material at that time. More specifically, only one meter is reloaded at a time. This reduces the requirement for greater rates of transfer of the material from the drums


42


,


44


to the meters


28


-


38


. By so reducing the rate of transfer, the inventive method


54


reduces the requirement for the number of drums


42


,


44


that may operate up to six robots


16


-


26


. Thus, the inventive method reduces the costs of operating a plurality of robots


16


-


26


by conserving the amount of material required to reload a meter


28


-


38


by controlling which of the meters


28


-


38


are being reloaded at any given time. Therefore, inherent in the method


54


is the step of waiting until all of the other meters


28


-


38


have completely reloaded before the step of receiving approval to reload the inactive meter. Once the step of reloading is completed, it is identified as a completed reload at


76


.




Returning to decision diamond


62


, it is determined whether the inactive meter has been reloaded. If not, a routine


78


for monitoring the integral pneumatic dispenser operations receives data that the inactive meter has not been reloaded. The routine


78


requests to reload at


66


. The reload request is directed toward the system programming logic controller


74


. The system programming logic controller


74


regulates all of the meters


28


-


38


. Therefore, the system programming logic controller


74


determines when an inactive meter may be reloaded. The digital signal to reload is transmitted to decision diamond


68


via line


80


. If the data signal implies that the inactive meter maybe reloaded, the signal is generated at block


72


. If approval for reload has not been given, the method waits at


82


for 250 milliseconds and then determines whether the reload request time has expired at


84


. If the reload request time has expired, a fault is generated at


86


. If not, the system programming logic controller


74


determines whether a reload of the inactive meter is appropriate at


68


.




If it was determined that a reload was appropriate, the reload operation would start at


70


. A timer would be started at


88


and the method waits for approximately 250 milliseconds at


90


. It is then determined whether the reload time has expired at


92


. If so, a reload timeout fault is generated at


94


. This ensures the robots


16


-


26


do not empty the two shotmeter cylinders (not shown) before one of them is reloaded. If the reload time has not expired, however, it is then determined whether the reload is completed at


96


. If the reload is not completed, the method returns to the step of waiting 250 milliseconds at


90


before it tests whether the reload time has expired at


92


.




If it is determined that the reload has completed at


76


, that information is transmitted to decision diamond


62


, as is graphically represented by the phantom arrow


98


. Because the inactive meter has been reloaded, its status is switched to an active meter at


64


. This status information is transmitted to the integral pneumatic dispenser operations routine at


78


. Further, the information regarding the completed reload is transmitted to the routine


100


controlling the integral pneumatic dispenser operations


100


with the instructions to turn off the reload request at


102


to maximize the resources of the systems programming logic controller


74


.




The invention has been described in an illustrative manner. It is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation.




Many modifications and variations of the invention are possible in light of the above teachings. Therefore, within the scope of the appended claims, the invention may be practiced other than as specifically described.



Claims
  • 1. A method for reloading a plurality of shotmeters supplying fluid material to a plurality of robots from a bulk supply, the method comprising the steps of:activating one of the shotmeters to define a primary shotmeter; dispensing the material from the primary shotmeter; determining when the primary shotmeter becomes empty; activating the other of the shotmeters to continue dispensing the material; forwarding a request to reload the primary shotmeter that has been emptied; receiving approval to reload the primary shotmeter that has been emptied; and reloading the primary shotmeter that has been emptied only when the primary shotmeter is the only one of the plurality of shotmeters relying on the bulk supply at that time.
  • 2. A method as set forth in claim 1 including the step of waiting until the other of the plurality of shotmeters have completed reload before the step of receiving approval to reload the primary shotmeter.
  • 3. A method as set forth in claim 2 including the step of identifying when the step of reloading has been completed.
  • 4. A method as set forth in claim 1 including the step of measuring the capacities of the shotmeters.
  • 5. A method as set forth in claim 4 including the step of increasing the number of shotmeters capable of being reloaded depending on the determination made during the step of measuring the capacities of the shotmeters.
  • 6. A method as set forth in claim 3 including the step of timing the reload request to determine whether the robot will dispense all of the material in the shotmeters associated with the robot.
  • 7. A method as set forth in claim 6 including the step of generating a fault to prevent the robot from emptying the shotmeters associated with the robot before one of the shotmeters is reloaded.
  • 8. A method for reloading a plurality of shotmeters supplying fluid material to a plurality of robots from a bulk supply, the method comprising the steps of:activating one of the shotmeters to define a primary shotmeter; dispensing the material from the primary shotmeter; determining when the primary shotmeter becomes empty; activating the other of the shotmeters to continue dispensing the material; forwarding a request to reload the primary shotmeter that has been emptied; receiving approval to reload the primary shotmeter that has been emptied; reloading the primary shotmeter that has been emptied only when the primary shotmeter is the only one of the plurality of shotmeters relying on the bulk supply at that time; determining whether a reload time has expired; and generating a fault before the robot empties the plurality of shotmeters.
US Referenced Citations (4)
Number Name Date Kind
3871556 Breer et al. Mar 1975
4458827 Stelte Jul 1984
5823389 Guzowski Oct 1998
5857589 Cline et al. Jan 1999