The present invention is generally related to connecting mechanisms and is more particularly related to a connector that requires low force to connect and high force to disconnect.
Connectors have been used in a great variety of applications, see, for example, U.S. Pat. Nos. 4,678,210, 4,763,683, 5,411,348 and 5,545,842. Each of the connectors referenced are directed to specific applications.
For example, U.S. Pat. No. 4,678,210, provides for a loading and locking mechanism directed to engaging and interlocking lightweight, delicate and many times fragile cylindrical parts with one another and provides for locking means for preventing separation of a first and second cylindrical member.
U.S. Pat. No. 4,763,683 is directed to a breakaway coupling for a coaxial fuel supply hose and provides for inner-connecting valve bodies, which define a center fuel supply passage.
U.S. Pat. Nos. 5,411,348 and 5,545,842 are directed to mechanisms for connecting and locking parts for effecting electromagnetic shielding, electrical conductivity, heat dissipation and environmental sealing.
The present invention provides for a connector utilizing a radial canted coil spring positioned within a housing groove in a manner for controlling connect and disconnect forces with a groove pin.
A connector in accordance with the present invention generally includes a housing having a bore with a groove disposed on an inside surface of the bore. The bore groove establishes a release angle between a housing groove bottom and the bore inside surface.
A retainer is provided for defining a spring cavity between the retainer and the release angle and a circular radial canted coil spring is disposed in the spring cavity. The coil spring includes a centerline, a major and a minor axis, as hereinafter described.
A pin is provided having a tapered end and a body diameter sized for sliding engagement with the bore inside surface. A circumferential groove is formed in the pin body for receiving the coil spring upon insertion of the pin into the bore.
The circumferential groove includes a load angle for rotating the coil spring in an orientation in which the spring major axis is parallel with the release angle upon initial withdrawal of the pin from the bore. Continued withdrawal compresses the coil spring along the spring minor axis and upon further withdrawal of the pin from the bore the spring expands radially.
More particularly, the load angle is disposed below a centerline of the coil spring, should the load angle be above the centerline of the coil spring, disconnect would not be possible. This distinguishes the present invention from the hereinabove referenced prior art patents.
More particularly, the housing groove may include a coil groove stop disposed between the release angle and the bore inside surface for limiting axial movement of the coil spring upon withdrawal of the pin from the bore.
The release angle may be disposed at between about 5° and about 90° to the centerline connector and is preferably disposed at between about 25° and about 65° to the connector centerline.
With the use of the stop means, hereinabove noted, the preferable release angle is between about 25° and about 30° to a centerline of the connector.
Still more particularly, the coil spring may be initially disposed within the cavity with a major axis disposed within an included angle of between about 30° and about 45°. In that regard, the coil spring may be initially disposed in the cavity in a convex orientation or in a concave orientation.
In all of the embodiments of the present invention, the load angle may be disposed at an angle of between about 5° and about 90° with the connector centerline and preferably at about 40° to the connector centerline.
Preferably, the coil spring has an inside diameter smaller than the pin body diameter, so that a force is provided which urges the coil spring toward the inside diameter of the pin groove. This facilitates insertion of the pin into the spring. In addition, preferably, the load angle means is greater than the release angle by at least 10.
Further, control of the ratio of connect to disconnect forces is provided by a spring having a ratio of coil width to coil height of between about 1 to about 1.5, preferably, between about 1 to about 1.04.
The advantages and features of the present invention will be better understood by the following description when considered in conjunction with the accompanying drawings in which:
With reference to
A retainer 28 is provided, which defines a spring cavity 30 between the retainer 28 and the release angle surface 22.
A circular radial canted coil spring 32 is disposed in the spring cavity 30 and a pin 34 having a tapered end 36 includes a body 38 having a diameter sized for sliding engagement with the bore inside surface 18.
The pin 34 includes a circumferential pin groove 48 having a load angle, or surface, 46, which provides a means for rotating the spring 32 to an orientation in which a spring major axis 54, see
Further withdrawal of the pin 34 from the bore 14 compresses the coil spring 32 along a spring minor axis 56 (again, see
With specific referenced to
This spring 32 includes an inside diameter, D, which is smaller than the pin groove 48 diameter in order that the spring 32 is forced toward a pin groove bottom, or inside diameter, 66.
As shown in FIGS. 1 and 4-8, the release angle 22 is disposed at about 23° to a centerline 70 of the connector 10. It should be appreciate that this release angle may be disposed at between about 5° and 90° with the centerline 70 of the connector 10 in order to control, connect and disconnect forces, as hereinafter described.
With reference again to
As shown in
With reference to
Variation of the load angle 46 to the release angle 22 affects the force required to disconnect. The larger the release angle 22, the higher the force to disconnect. The larger the load angle 46 the greater the force required to disconnect. The greater the release angle 22 the greater the coiled 62 reflection and the greater the force required to disconnect.
As hereinabove noted, the closer the radial centerline 70 of the spring 32 to a load point 90 at the intersection of the pin body 38 with the load angle surface 46 (see
As shown in
Concave springs 72 have the advantage of reduced force during initial connection when the concave angle is the same as the entry angle B, see
As shown in FIGS. 1 and 4-8, the radial spring 32 has a major axis 94, which is parallel to the centerline 70, 60 of the spring 32, see
In this case, the pin 32 outside diameter at entry will be parallel to the major axis of coil since the inside diameter of the spring 32 is generally smaller than the pin body outside diameter 38. A tapered end, or chamfer, 36 is desirable for facilitating assembly. The tapered end 36 reduces the force required to connect, which is important since an objective of the present invention is to maximize the ratio of disconnect to connect force.
The concave spring 72 has the advantage that the tapered end 36 of the pin 34 at the entry angle can be made parallel to the concave angle. In this manner, the initial force required to connect is minimized by making the spring concave angle the same as the tapered end 36.
The convex spring 82 requires substantially greater force at entry because it will be necessary to turn this spring 82 to the position of the entry angle of the tapered end 36 of the pin 34. Thus, the convex spring 82 is desirable and applications for a high entry force is desirable.
When connection takes place, the spring 32, 72, 82 positions itself at the normal or initial position at the bottom 66 of the pin groove 48. The force required to disconnect the connector 10 varies depending upon the type of spring 32, 72, 82 utilized be it the radial 32, radio concave 72 or radio convex 82 with the concave spring 72 requiring more force to disconnect than the radial spring 32 and convex spring 82. The reason for this force difference is due to the fact that the spring 32, 72, 82 must position itself with the major axis 76, 84, 94 of the coil parallel to the release angle surface 22 in the housing 12, and that requires turning of the spring 32, 72, 82.
The concave spring 72 requires greater ° of turning of the coil in the convex spring 82 and the more turning the spring 72, 82, the more stresses are parted to the spring causing greater force at disconnect. For these reasons, the spring 32, 72, 82 that requires minimum amount of turning results in minimum disconnect force and maximum turning results and maximum disconnect force. The concave spring 72 offers greater variation between disconnect and connect ratio because it requires less force to connect and greater forces to disconnect. When this feature is desirable to concave spring 72 has significant advantage.
In general, there are four main factors that affect the selection of the spring for maximum connect or disconnect ratio. They are:
In addition to the type of spring used, the many factors that will affect the disconnect force.
With the present invention, the ratio of disconnect force to connect force may be as high as 30 to 1. FIGS. 1 and 4-8 illustrate sequential position of the pin 34 and housing 12 utilizing a release angle 22 of the 23°.
It should be appreciate that the actual play of the pin 34 varies with the release angle 22. By way of specific example, at small angles, that is 23° and 33° the axial play is approximately the same at about 0.007 inches. As a release angle 22 increases to 45° the axial play decreases to 0.004 inches with the same dimensions. See
Although there has been hereinabove described a specific connector with radial spring in accordance with the present invention for the purpose of illustrating the manner in which the invention may be used to advantage, it should be appreciated that the invention is not limited thereto. That is, the present invention may suitably comprise, consist of or consist essentially of the recited elements. Further, the invention illustratively disclosed herein suitably may be practiced in the absence of any element, which is not specifically disclose herein. Accordingly, any and all modifications, variations or equivalent arrangements which may occur to those skilled in the art, should be considered to be within the scope of the present invention as defined in the appended claims.
This application is a continuation of U.S. application No. 12/577,033 now U.S. Pat. No. 8,166,623, filed Oct. 9, 2009; which is a divisional application of U.S. application Ser. No. 11/111,109 now abandoned, filed Apr. 21, 2005, which is a divisional application of U.S. application Ser. No. 10/300,358 now abandoned, filed Nov. 19, 2002, which is a regular application of Provisional No. 60/333,103, filed Nov. 21, 2001, the contents of all of which are expressly incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2538683 | Guiler | Jan 1951 | A |
2797937 | Frishof | Jul 1957 | A |
3087038 | Bethke | Apr 1963 | A |
4632434 | Proctor | Dec 1986 | A |
4678210 | Balsells | Jul 1987 | A |
4763683 | Carmack | Aug 1988 | A |
4804290 | Balsells | Feb 1989 | A |
4805943 | Balsells | Feb 1989 | A |
5082390 | Balsells | Jan 1992 | A |
5108078 | Balsells | Apr 1992 | A |
5139276 | Balsells | Aug 1992 | A |
5411348 | Balsells | May 1995 | A |
5545842 | Balsells | Aug 1996 | A |
5727821 | Miller | Mar 1998 | A |
Number | Date | Country | |
---|---|---|---|
20120213575 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
60333103 | Nov 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11111109 | Apr 2005 | US |
Child | 12577033 | US | |
Parent | 10300358 | Nov 2002 | US |
Child | 11111109 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12577033 | Oct 2009 | US |
Child | 13447595 | US |