The disclosure is directed to inhalation drug delivery systems and in particular to modifying plume characteristics of fluid jet drug delivery systems for inhalation applications.
Nasal spray devices have become important methods for delivering drugs to patients. Such nasal spray devices are more convenient to use than the administration of drugs through IV or injection. Nasal spray devices also provide higher bioavailability of drugs compared to oral administration of drugs. The absorption of drugs through nasal spray devices is more rapid compared to the absorption of drugs administered orally since drugs delivered by nasal spray devices directly enter the blood stream making their effect more immediate.
It is believed that smaller, lower velocity fluid droplets are best for deposition of drugs in the nasal cavity 10. Fluid droplets with high inertia will tend to move in a straight line and land at the point only where they are aimed. Fluid droplets with low inertia will be affected by air resistance and air currents and are more likely to float throughout the nasal cavity for more even drug delivery coverage.
Another aspect of nasal delivery of drugs that may increase deposition coverage is the plume angle of the fluid droplets. A wider plume angle is believed to provide greater mist formation and thus better coverage of drug delivery in the nasal cavity. Conventional methods for delivering drugs via the nasal cavity include medicine droppers, multi-spray bottles with spray tips, single-dose syringes with spray tips, and dry powder systems. Accordingly, conventional drug delivery devices are typically designed to deliver a specific drug to a nasal cavity and each device cannot be adapted for delivering a wide range of drugs via a nasal cavity route. Many of the conventional methods for nasal drug delivery rely on pressurized containers to inject a mist of fluid into the nasal cavity. Accordingly, the drug delivery devices are typically designed for a specific drug and cannot be adapted to administer a different drug.
Despite the availability of a variety of devices for delivering drugs via a nasal cavity route, there remains a need for a single nasal drug delivery device that can be tuned to deliver a variety of drugs over a range of velocities, fluid ejection times, and plume angles.
In view of the foregoing an embodiments of the disclosure provide a pharmaceutical drug delivery device and method of using the pharmaceutical drug delivery device.
In one embodiment, the pharmaceutical drug delivery device includes a cartridge body; a fluid outlet nozzle attached to the cartridge body; and a fluid jet ejection cartridge disposed in the cartridge body, wherein the cartridge contains a liquid pharmaceutical drug and a fluid ejection head containing a plurality of fluid ejection nozzles and associated fluid ejectors. A processor disposed on a logic board or the fluid ejection head is provided for executing a control algorithm to control the ejection head to modify plume characteristics of fluid ejected from the ejection head by controlling one or more operating parameters selected from (a) fluid jet firing frequency, (b) burst length, and (c) fluid jet firing burst delay.
In another embodiment, there is provided a method of controlling a fluid plume from a fluid ejection device for delivery of pharmaceutical drugs. The method includes providing the fluid ejection device having a cartridge body, a fluid outlet nozzle attached to the cartridge body and a fluid jet ejection cartridge disposed in the cartridge body. The fluid jet ejection cartridge contains a liquid pharmaceutical drug. A fluid ejection head containing a plurality of fluid ejection nozzles and associated fluid ejectors is attached to the fluid jet ejection cartridge and the fluid ejection head is in fluid flow communication with the fluid outlet nozzle. A processor is provided in electrical communication with the fluid ejection head. The processor is configured to execute a control algorithm to select one or more operating parameters selected from (a) fluid jet firing frequency, (b) burst length, and (c) fluid jet firing burst delay in order to modify fluid plume characteristics of fluid ejected from the ejection head through the fluid outlet nozzle. Upon activation of the fluid ejection device a pharmaceutical drug is delivered to a patient.
In another embodiment, there is provided a method for nasal cavity injection of pharmaceutical drugs. The method includes providing a fluid ejection device having a cartridge body, a fluid outlet nozzle attached to the cartridge body and a fluid jet ejection cartridge disposed in the cartridge body. The fluid jet ejection cartridge contains a liquid pharmaceutical drug. A fluid ejection head containing a plurality of fluid ejection nozzles and associated fluid ejectors is attached to the fluid jet ejection cartridge and the fluid ejection head is in fluid flow communication with the fluid outlet nozzle. A processor is provided in electrical communication with the fluid ejection head. The processor is configured to execute a control algorithm to select one or more operating parameters selected from (a) fluid jet firing frequency, (b) burst length, and (c) fluid jet firing burst delay in order to modify fluid plume characteristics of fluid ejected from the ejection head through the fluid outlet nozzle. The pharmaceutic drug is delivered to the nasal cavity of a person by activating the fluid ejection device.
In some embodiments, each fluid droplet ejected from the ejection head has volume ranging from about 2 to about 24 pL.
In some embodiments, each of the fluid ejectors has a firing frequency ranging from about 2 to about 20 KHz.
In some embodiments, the burst length ranges from about 20 to about 250 fluid ejectors fired per burst.
In some embodiments, the fluid jet firing burst delay ranges from about 0 milliseconds to about 15 milliseconds.
In some embodiments, the pharmaceutical drug is ejected from the device with a fluid plume angle ranging from about 25 to about 60 degrees.
In some embodiments, the pharmaceutical drug is ejected from the device with a fluid plume height ranging from about 10 to about 25 centimeters.
In some embodiments, the pharmaceutical drug is ejected from the device with a fluid jet length ranging from about 1 to about 25 centimeters from the fluid ejection head.
In some embodiments, the pharmaceutical drug is ejected with a plume characteristic that delivers the drug to turbinate areas of a nasal cavity of the patient.
In some embodiments, the pharmaceutical drug is ejected with a plume characteristic that evenly distributes the drug throughout a nasal cavity of the patient.
In some embodiments, the pharmaceutical drug is ejected with a plume characteristic that increases a drug dose delivery rate to the patient.
An advantage of the pharmaceutical drug delivery device described herein is that the device may be used for a wide variety of drugs having different fluid characteristics. The device is tunable by modifying certain fluid ejector characteristics in order to modify a plume angle, jet fluid length and/or plume height of fluid mist for nasal injection applications. Other features and advantage of the disclosed embodiments may be evident from the following drawings and detailed description.
For the purposes of this disclosure, the following terms are defined:
An illustration of a pharmaceutical drug delivery device 100 is illustrated in a cross-sectional view, not to scale, in
A wide variety of ejection heads 112 may be used with the device 100 described above. Accordingly, the ejection head 112 may be selected from a thermal jet ejection head, a bubble jet ejection head, or a piezoelectric jet ejection head. Each of the foregoing ejection heads can produce a spray of fluid on demand and may be programmed to provide a variety of fluid plume characteristics as described below. By contrast, conventional spray pumps are mechanically fixed for a particular drug delivery application and generally cannot be modified to provide a variety of fluid plume characteristics.
Unlike conventional inkjet ejection heads which are designed to eject fluid droplets in a straight line for 2 to 3 mm to reach a substrate such as paper, the device 100 described herein is designed to eject fluid droplets as a mist further into an air stream so that the droplets eventually land in the mucosa area of the nasal cavity.
As shown in
Another parameter that has an effect on the fluid jet stream and plume characteristics is the burst length. A portion of the ejection head 202 for ejecting 4 pL droplets per nozzle is illustrated in plan view in
Finally, it was demonstrated that the time delay between fluid jet firing bursts from 50 nozzles 208 of the ejection head 202 can be used to change the plume characteristics. As before, each nozzle was designed to eject 4 pL droplets of fluid per burst. As shown in
It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” include plural referents unless expressly and unequivocally limited to one referent. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by the present disclosure. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
While particular embodiments have been described, alternatives, modifications, variations, improvements, and substantial equivalents that are or can be presently unforeseen can arise to applicants or others skilled in the art. Accordingly, the appended claims as filed and as they can be amended are intended to embrace all such alternatives, modifications variations, improvements, and substantial equivalents.