The instant application should be granted the priority date of Feb. 19, 2008, the filing date of the corresponding International patent application PCT/EP2008/001264.
The invention relates to a method for controlling longwall mining operations having a face conveyor, at least one extraction machine, and a hydraulic shield support in underground coal mining.
The control of longwall operations during extraction generally is concerned with the best possible exploitation of the provided machine capacities while avoiding shutdowns, an automation of the required control procedures being provided if possible, in order to avoid flawed human decisions. Approaches to automation of the control are in development and/or already in use, such as sensory boundary layer detection/control, learning step methods, recognition and control of the stepping path of the stepping shield support, automated stepping of the shield support, and automatic maintenance of a predefined set inclination of the face conveyor.
One problem in the automation of controlling a longwall mining operation is, inter alia, in so-called boundary layer recognition, i.e., the recognition of the transition between coal and country rock, connected with the establishment of whether the employed extraction machine is working beyond the extraction of the coal in the overlying stratum and/or in the footwall, i.e., in the country rock. The corresponding finding is important, on the one hand, with respect to the reduction of the caving in of rock during the extraction work, because every engagement in the horizontal of overlying stratum and footwall increases the caving in of additional rocks. Furthermore, in general an engagement of the extraction machine into the overlying stratum is also to be avoided because this provides or increases the danger of caving in from the overlying stratum, and such a caving in from the overlying stratum disturbs or makes more difficult the support work using the shield support frames following the extraction front. This also applies correspondingly for a cut into the footwall level or layer of the seam opening. On the other hand, however, it can be necessary when driving through faults or driving through saddles or troughs to perform a planned footwall cut, in order to ensure a sufficient seam opening for the passage of the longwall equipment, and in this case the monitoring of the extent of the particular footwall cut is desirable.
The invention is therefore based on the object of disclosing a method according to the features mentioned at the beginning, which allows monitoring of a cut of the extraction machine in the country rock.
The achievement of this object results, including advantageous embodiments and refinements of the invention, from the content of the claims which are appended to this description.
In its basic idea, the invention provides that at least one sensor is situated on the shield support frames for detecting solid-borne noise data generated by the engagement of the extraction machine in coal and/or country rock, and a cut of the extraction machine into the country rock is determined in a downstream computer unit on the basis of the recorded vibration data corresponding to the generated solid-borne noise.
The invention primarily makes use of the finding that upon engagement of an extraction machine in the coal, on the one hand, and in the country rock, on the other hand, a varying solid-borne noise which is expressed in vibrations transmitted in the level of country rock is generated by the extraction machine. Because the individual shield support frames are tightened at correspondingly high pressure between the overlying stratum and the footwall during the extraction work, it is possible to tap the solid-borne noise data transmitted by the overlying stratum and/or the footwall, similarly to a stethoscope, in the area of an individual shield support frame. For this purpose, it is has proven to be advantageous that the transmission of the solid-borne noise from the location of its occurrence at the engagement point of the extraction machine in the country rock up to the boom of the shield support frame is not subject to any substantial damping, so that the solid-borne noise transmitted in the form of corresponding vibrations is available for an analysis to be performed in the downstream computer unit. The reliability and precision of a boundary layer detection executed in this manner is greater the more strongly the rock properties differ from the properties of the coal seam during the extraction work.
According to one exemplary embodiment of the invention, it is provided that an inclination sensor, which is situated in the floor skid and/or the top canopy of the shield support frame and is implemented as an acceleration sensor having high sensitivity, is used for acquiring the solid-borne noise data. It is to be noted for this purpose that inclination sensors of this type are provided in shield support frames belonging to corresponding longwall equipment and also for other control reasons, for example to calculate the face opening from the inclination data of the shield support frames, so that inclination sensors of this type are typically provided and thus assume an additional task in the boundary layer recognition.
Alternatively or optionally also in the event of inadequate sensitivity of the inclination sensors, it is additionally provided according to an exemplary embodiment of the invention that at least one solid-borne noise microphone is to be used on the floor skid and/or the top canopy of the shield support frame for acquiring the solid-borne noise data or recording the vibration data.
The method according to the invention may be applied in particular upon use of a disc shearer loader as the extraction machine, because the extraction chisels which are situated distributed over the circumference of the particular discs generate corresponding solid-borne noise upon entering their cutting track and in the course of this cutting track. The frequency of the chisel entries in the material to be cut is a function of the speed of the discs, the mounting density of the discs with the extraction chisels, and the march speed of the disc shearer loader. The solid-borne noise varies with the cutting resistance, which is in turn a function of the composition of the coal or the country rock and the shape of the chip generated by the extraction chisels. If a disc also cuts country rock in addition to coal, three different vibration states may fundamentally be recognized, namely the free running of the extraction chisels, the engagement of the extraction chisels in the country rock, and the engagement of the extraction chisels in the coal. In that a recognition of its engagement state is fundamentally possible for each chisel on the basis of these vibration states, an analysis of the recorded signals is made more difficult, however, in that typically multiple chisels are simultaneously engaged with the country rock, so that the signals of multiple chisels are superimposed in such a case.
In order to take this circumstance into consideration and improve the precision of the boundary layer recognition, it is provided according to an exemplary embodiment of the invention that in the case of an extraction machine implemented as a disc shearer loader, in addition to the extraction chisels, special signal chisels which amplify the solid-borne noise occurring upon entry of the chisels into the country rock are situated on at least one disc. Both the number and also the angular distribution of the signal chisels around the disc may be designed variably. Because the particular engagement time of the signal chisels in country rock and/or coal can be determined at a known peripheral distance between the signal chisels, it is possible to calculate the depth of the engagement of the disc in the country rock in the downstream computer unit in this exemplary embodiment of the invention. It is necessary for the signal chisels to have special mechanical properties in relation to the normal extraction chisels.
According to exemplary embodiments of the invention, the signal chisels may have a somewhat enlarged cutting radius and/or a special geometry and/or may be mounted in a special chisel holder, which generates a special natural frequency upon cutting of the disc into country rock, which is overlaid in an amplifying manner on the engagement frequency of the signal chisel in the country rock.
According to one exemplary embodiment of the invention, a frequency analysis is provided for the analysis of the recorded solid-borne noise data, in order to perform the required differentiation between the extraction chisels, which are located in a large number on the disc, and the signal chisels, which are only situated in a smaller number.
It is provided according to the invention that a sensor for acquiring the location of the extraction machine in the longwall is situated on the extraction machine, so that a spatial relationship between the position of the extraction machine and the assigned shield support frame can be produced in the computer unit.
An exemplary embodiment of the invention, which is described hereafter, is illustrated in the drawing. In the figures:
Although the invention is explained hereafter on the basis of an extraction machine implemented as a disc shearer loader, the basic idea of the invention using the recognition of differing solid-borne noise data during the extraction work may also be applied to plowing or planing operations having a plow or plane used as the extraction machine.
The longwall equipment shown in
The shield support frame 10 shown in
The use of longwall equipment constructed in this manner with respect to the boundary layer detection during a footwall cut of the lower disc 24 is schematically shown in
In the illustrated exemplary embodiment, the lower disc 24 operates in a cut in the footwall 29, the rotational direction of the lower disc 24 again being illustrated by the arrow 31. For this purpose, the mounting of the lower disc 24 with extraction chisels 33 is additionally recognizable from
If it is not possible, because of the superposition of the solid-borne noise vibration signals during the simultaneous engagement of two extraction chisels 33 in the footwall 29, to calculate the depth 32 of the footwall cut, it is provided in the exemplary embodiment shown in
The features of the subject matter of this application disclosed in the above description, the claims, the abstract, and the drawing may be essential both individually and also in arbitrary combinations with one another for the implementation of the invention in its various embodiments.
The specification incorporates by reference the disclosure of International application PCT/EP2008/001264, filed Feb. 19, 2008.
The present invention is, of course, in no way restricted to the specific disclosure of the specification and drawings, but also encompasses any modifications within the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/001264 | 2/19/2008 | WO | 00 | 8/19/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/103305 | 8/27/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4189183 | Borowski | Feb 1980 | A |
4968098 | Hirsch et al. | Nov 1990 | A |
5090775 | Berger | Feb 1992 | A |
5553925 | Merten et al. | Sep 1996 | A |
Number | Date | Country |
---|---|---|
3127702 | Feb 1983 | DE |
3338114 | May 1985 | DE |
3742184 | Jun 1989 | DE |
10354281 | Jun 2005 | DE |
102005005869 | Aug 2006 | DE |
2092207 | Aug 1982 | GB |
Number | Date | Country | |
---|---|---|---|
20110001348 A1 | Jan 2011 | US |