The present invention relates to a method and a system for controlling operation of an HVAC (Heating, Ventilation and Air Conditioning) system. Specifically, the present invention relates to a method and a system for controlling operation of an HVAC system having actuator driven valves for adjusting the flow of fluid in the HVAC system and one or more sensors for sensing operational parameters of the HVAC system.
In HVAC systems, zoning is becoming increasingly popular in residential buildings as it allows a finer regulation of the temperature and flow of energy. The flow of fluid, e.g. air, i.e. its amount or volume, into a zone, e.g. an enclosed space or room in a building, is controlled by an actuated valve or damper. The position of the valve or damper is controlled depending on the measurement of the thermostat in each zone and demand, e.g. a desired temperature in the zone. The demand is set by a user or by a computerized system that anticipates the user's demand. A new generation of thermostats is capable of learning users' habits to anticipate the needs in different zones. Moreover, the new generation of thermostats can be connected to a telecommunications network and can incorporate and consider in their anticipatory algorithms outside information, such as climatic region, altitude, and/or weather predictions.
Flow of air in a zone may be affected by the closing and opening of other dampers in the HVAC system, making the system often quite instable. To obtain pressure-independence of the air flow in the zone, flow sensors are implemented in the air duct and the damper position is controlled in response to the demand and the actual flow value.
In variable air volume (VAV) HVAC systems with multiple zones, the closing of all dampers leads to possible mechanical damage of the duct work and often to an inacceptable noise level. Furthermore, if all dampers but one are closed, the regulation of the flow becomes increasingly difficult, as the position of the damper has to be controlled within a small range because of the excess system pressure.
To overcome some of these problems, in a first solution of the prior art, a fan with variable speed is used. The speed of the ventilator is adjusted by a local controller depending on the position of the damper with the largest opening. The applicant is selling such a solution under the name “Fan Optimiser”.
In a second solution of the prior art, a modulating bypass damper is used to maintain the overall system pressure (after the bypass damper) within reasonable limits. However, often it is not possible to retrofit existing HVAC system installations with the addition of such a bypass damper.
It is an object of this invention to provide a method and a system for controlling operation of an HVAC system, which method and system do not have at least some of the disadvantages of the prior art. In particular, it is an object of the present invention to provide a method and a system for controlling operation of an HVAC system having actuator driven valves for adjusting the flow of fluid in the HVAC system and one or more sensors for sensing operational parameters of the HVAC system. In an aspect of this invention, provided are a method and a system for controlling the flow of air into a plurality of zones of a variable air volume HVAC system, which method and system do not require a fan with variable speed or the installation of a bypass damper.
According to the present invention, these objects are achieved through the features of the independent claims. In addition, further advantageous embodiments follow from the dependent claims and the description.
An HVAC system has actuator driven valves for adjusting the flow of fluid in the HVAC system and one or more sensors for sensing operational parameters of the HVAC system. In the present context the term “valve” is meant to also include “dampers”, vice versa, the term “damper” includes “valves”, unless explicitly stated otherwise. Moreover, while the specification refers primarily to “air”, one skilled in the art will understand that the described solution is applicable to fluids in general, including other types of gas as well as liquids, e.g. water.
According to the present invention, the above-mentioned objects are particularly achieved in that for controlling operation of the HVAC system sensed operational parameter values of the HVAC system are transmitted from the one or more sensors via a telecommunications network to a cloud-based HVAC control center. In the cloud-based HVAC control center, control values for the actuators are calculated using the sensed operational parameter values from the one or more sensors and calibration values stored in the cloud-based HVAC control center. The calibration values indicate operational parameters of the HVAC system at defined conditions in the HVAC system. The control values for the actuators are transmitted from the cloud-based HVAC control center to the actuators.
In an embodiment, current valve position values are transmitted from the actuators via the telecommunications network to the cloud-based HVAC control center and in the cloud-based HVAC control center the control values for the actuators are calculated using the current valve position values from the actuators, the sensed operational parameter values from the one or more sensors, and calibration values stored in the cloud-based HVAC control center, whereby the calibration values indicate operational parameters of the HVAC system at defined valve positions and defined conditions in the HVAC system.
A variable air volume HVAC system has a plurality of zones, actuator driven dampers, which operate in a range from a minimum damper position to a maximum damper position for adjusting the flow of air into a zone of the HVAC system, and one or more flow sensors.
In a further aspect of the present invention, for controlling the flow of air into the plurality of zones of the variable air volume HVAC system, flow measurement values are transmitted from the one or more flow sensors via the telecommunications network to the cloud-based HVAC control center. The current damper position values are transmitted from the actuators via the telecommunications network to the cloud-based HVAC control center. In the cloud-based HVAC control center, the minimum damper position is calculated for the actuators such that the pressure in the HVAC system does not exceed a defined maximum pressure threshold, using the flow measurement values from the one or more flow sensors and calibration values stored in the cloud-based HVAC control center. The calibration values indicate HVAC system parameters at a defined calibration pressure in the HVAC system and at different damper positions. The minimum damper position is transmitted from the cloud-based HVAC control center to the actuators.
In an embodiment, the total flow in the HVAC system is determined from the flow measurement values of one or more flow sensors, and the minimum damper position is calculated in the cloud-based HVAC control center, using the total flow in the HVAC system.
In another embodiment, calculating the minimum damper position includes calculating in the cloud-based HVAC control center a flow ratio using the total flow in the HVAC system and calibration flow values stored in the cloud-based HVAC control center, the calibration flow values indicating the flow of air through a damper at the defined calibration pressure in the HVAC system and at the current damper position of the respective damper, and calculating the minimum damper position for the actuators using the flow ratio.
In an embodiment, the flow ratio is compared in the cloud-based HVAC control center to a threshold value, the threshold value being dependent on the defined maximum pressure threshold, and the minimum damper position is calculated depending on the comparison of the flow ratio to the threshold value.
In another embodiment, calculating the minimum damper position includes calculating in the cloud-based HVAC control center a pressure ratio using the total flow in the HVAC system and calibration flow values stored in the cloud-based HVAC control center, the calibration flow values indicating the flow of air through a damper at the defined calibration pressure in the HVAC system and at the current damper position of the respective damper, and calculating the minimum damper position for the actuators by comparing in the cloud-based HVAC control center the pressure ratio to a threshold value, the threshold value being dependent on the defined maximum pressure threshold, and calculating the minimum damper position depending on the comparison of the pressure ratio to the threshold value.
In a further embodiment, demand data is transmitted from the HVAC system via the telecommunications network to the cloud-based HVAC control center. The demand data is indicative of air flow requirements of the zones of the HVAC system. Using the current damper position values from the actuators, the damper having the largest current opening is determined in the cloud-based HVAC control center. A defined maximum damper position is set in the cloud-based HVAC control center for the damper having the largest current opening. Using the demand data and the flow measurement values, an adjusted fan speed is calculated in the cloud-based HVAC control center for a fan in the HVAC system, such that a demand is met for the zone associated with the damper having the largest current opening. The adjusted fan speed is transmitted from the cloud-based HVAC control center via the telecommunications network to the fan in the HVAC system.
In an embodiment, an HVAC control report is generated in the cloud-based HVAC control center and the HVAC control report is transmitted from the cloud-based HVAC control center via the telecommunications network to a communication terminal registered in the cloud-based HVAC control center for the HVAC system. For example, the HVAC control report includes control values for the actuators as calculated by the cloud-based HVAC control center.
In addition to the method and the system for controlling the flow of air into a plurality of zones of a variable air volume HVAC system, the present invention also relates to a computer program product comprising a non-transient computer readable medium having stored thereon computer program code for controlling a processor of a computerized cloud center, such that the cloud center implements a cloud-based HVAC center that performs the steps of: storing calibration values for an HVAC system that indicate operational parameters of the HVAC system at defined conditions in the HVAC system; receiving via a telecommunications network sensed operational parameter values from one or more sensors of the HVAC system; calculating control values for actuators that drive valves of the HVAC system for adjusting the flow of fluid in the HVAC system, using the sensed operational parameter values from the one or more sensors and the calibration values for the HVAC system; and transmitting the control values for the actuators via the telecommunications network to the actuators of the HVAC system.
In a further aspect of the present invention, a computer program product comprises a non-transient computer readable medium having stored thereon computer program code for controlling a processor of a computerized cloud center, such that the cloud center implements a cloud-based HVAC center that performs the steps of: storing calibration values for a plurality of actuator driven dampers of a variable air volume HVAC system, which dampers are driven by the actuators in a range from a minimum damper position to a maximum damper position for adjusting the flow of air into a plurality of zones of the HVAC system, the calibration values indicating HVAC system parameters at a defined calibration pressure in the HVAC system and at different damper positions; receiving via a telecommunications network flow measurement values from one or more flow sensors of the HVAC system; receiving via the telecommunications network current damper position values from the actuators of the HVAC system; calculating a minimum damper position for the actuators such that the pressure in the HVAC system does not exceed a defined maximum pressure threshold, using the flow measurement values from the one or more flow sensors and the calibration values for the dampers at their respective current damper position; and transmitting the minimum damper position via the telecommunications network to the actuators of the HVAC system.
The present invention will be explained in more detail, by way of example, with reference to the drawings in which:
In
the system flow, in the air transporting system 10 to all the zones Z1, Z2, Z3, Zi.
Depending on embodiment and configuration, in addition to the flow sensor F, F1, F2, F3, Fi, the HVAC system 1 comprises further types of sensors and data sources for sensing and generating different types operational parameters of the HVAC system, including system pressure in the transporting system 10, differential pressure of valves and dampers, speed of a fan 11 or a pump, temperature values of the air (or fluid) at different positions in the transporting system 10 and in the zones Z1, Z2, Z3, Zi, damper and valve positions, motor speed of the actuators A1, A2, A3, Ai, etc.
The local HVAC system controller 12 comprises one or more operable computers with one or more processors and one or more communication modules configured for data communication with the actuators A1, A2, A3, Ai or their communication modules or controllers C1, C2, C3, Ci, respectively, and, depending on the embodiment, with the remote cloud-based HVAC center 3 via a telecommunications network 2, as described above in the context of the actuators A1, A2, A3, Ai.
The cloud-based HVAC center 3 comprises one or more operable computers with one or more processors and one or more communication modules configured for data communication with the actuators A1, A2, A3, Ai or their communication modules or controllers C1, C2, C3, Ci, respectively, and/or, depending on the embodiment, with the local HVAC system controller 12 via a telecommunications network 2, as described above in the context of the actuators A1, A2, A3, Ai.
In the following paragraphs, described with reference to
As illustrated in
The calibration values ϕ1calj, ϕ2calj, ϕ3calj, ϕicalj are stored in a data store of the local HVAC system controller 12 or the controllers C1, C2, C3, Ci of the actuators A1, A2, A3, Ai. Upon request, the calibration values ϕ1calj, ϕ2calj, ϕ3calj, ϕicalj are transmitted via telecommunications network 2 to the cloud-based HVAC center 3 where they are stored in a data store of the cloud-based HVAC center 3 assigned to the respective HVAC system 1.
In step S2, the total flow of air ϕtotal in the air transporting system 10, i.e. the current system flow, is determined. Depending on the embodiment or configuration, the current system flow ϕtotal is determined using the common flow sensor F or by calculating the system flow
from the flow values ϕ1, ϕ2, ϕ3, ϕi measured by the individual flow sensors F1, F2, F3, Fi arranged with the actuators A1, A2, A3, Ai or dampers D1, D2, D3, Di, respectively. The calculation of the system flow
is performed by the processor of the local HVAC system controller 12, by one of the controllers C1, C2, C3, Ci of the actuators A1, A2, A3, Ai, or by the processor of the cloud-based HVAC center 3, based on the flow values ϕ1, ϕ2, ϕ3, ϕi reported by the controllers C1, C2, C3, Ci of the actuators A1, A2, A3, Ai.
In step S3, the current damper positions Pos1, Pos2, Pos3, Posi of the dampers D1, D2, D3, Di are determined. Specifically, the current damper positions Pos1, Pos2, Pos3, Posi are transmitted to the cloud-based HVAC center 3. Depending on the embodiment, the current damper positions Pos1, Pos2, Pos3, Posi are transmitted to the cloud-based HVAC center 3 together with the respective current flow values ϕ1, ϕ2, ϕ3, ϕi, e.g. in one data transmission {Pos1, ϕ1;Pos2,ϕ2;Pos3,ϕ3;Posi,ϕi} or {Pos1, Pos2, Pos3, Posi, ϕtotal}, respectively, by the local HVAC system controller 12, or in separate data packets {Pos1,ϕ1}, {Pos2,ϕ2}, {Pos3,ϕ3}, {Posi,ϕi} from the controllers C1, C2, C3, Ci of the actuators A1, A2, A3, Ai, e.g. including time stamps. Depending on embodiment, configuration, and application, in addition, other types of operational parameters of the HVAC system, as described above, are transmitted to the cloud-based HVAC center 3.
In step S4, the processor of the cloud-based HVAC center 3 determines a minimum damper position Posmin for the dampers D1, D2, D3, Di such that a defined pressure threshold pmax is not exceeded in the air transporting system 10 of the HVAC system 1, as will be explained below in more detail with reference to
In step S5, the minimum damper position Posmin is set for the dampers D1, D2, D3, Di. Specifically, the processor of the cloud-based HVAC center 3 transmits the minimum damper position Posmin via telecommunications network 2 to the HVAC system 1, e.g. to the local HVAC system controller 12 for further distribution or directly to the controllers C1, C2, C3, Ci of the actuators A1, A2, A3, Ai or their communication modules, respectively. The minimum damper position Posmin is stored by the controllers C1, C2, C3, Ci and used for further actuation and operation of the dampers D1, D2, D3, Di. Thus, those dampers D1, D2, D3, Di that, determined by the demand for their respective zone Z1, Z2, Z3, Zi, would have a lower damper position Pi<Posmin will be operated at the newly set minimum damper position Posmin.
One skilled in the art will understand that setting an altered value for the minimum damper position Posmin will not only influence the air flow ϕ1, ϕ2, ϕ3, ϕi through the dampers D1, D2, D3, Di that have an altered damper position, but also on the other dampers D1, D2, D3, Di in the HVAC system 1. Consequently, the steps S2, S3, S4, and S5 are repeated iteratively, until the demands for all zones Z1, Z2, Z3, Zi are met without exceeding the defined maximum pressure pmax in the HVAC system 1.
In step S41, the processor of the cloud-based HVAC center 3 calculates a pressure criterion to determine whether (continued) calculation of an altered minimum damper position Posmin is necessary. Depending on the embodiment and configuration, a flow ratio Qϕ, a pressure ratio Qϕ, or the current (system) pressure pcurrent are used as pressure criterion.
The flow ratio
is calculated using the calibration flow values ϕ1calj, ϕ2calj, ϕ3calj, ϕicalj at the current damper positions j=[Pos1,Pos2,Pos3,Posi] of the respective damper D1, D2, D3, Di. In an embodiment, in subsequent steps, the flow ratio
is calculated using the calibration flow values ϕ1calj, ϕ2calj, ϕ3calj, ϕicalj at adjusted damper positions jadjusted=└Pos1adj,Pos2adj,Pos3adj,Posiadj┘ of the respective damper D1, D2, D3, Di, as will be explained below in the context of optional step S44.
The pressure ratio
is calculated using the calibration pressure pcal and the current pressure pcurrent, whereby the current pressure pcurrent is measured by way of a pressure sensor in the HVAC system 1 and transmitted to the cloud-based HVAC center 3, e.g. together with the current damper positions Pos1, Pos2, Pos3, Posi and/or flow values ϕ1, ϕ2, ϕ3, ϕi, ϕtotal, as described above. Without the measurement of the current pressure pcurrent, the pressure ratio Qp or the current pressure pcurrent, respectively, is calculated from the flow ratio
as the flow ratio Qϕ is equal to the pressure ratio
In step S42, the processor of the cloud-based HVAC center 3 checks the pressure criterion of step S41 to determine whether (continued) calculation of an increased minimum damper position Posmin is necessary. If the pressure criterion is met, i.e. the current pressure pcurrent does not exceed the defined pressure threshold pmax, step S4 ends and processing continues in step S5, as described above. Otherwise, processing continues in step S43 by setting an increased minimum damper position Posmin for lowering the current system pressure pcurrent.
For checking the pressure criterion, the processor of the cloud-based HVAC center 3 compares the pressure criterion to a respective threshold value. Specifically, the processor of the cloud-based HVAC center 3 checks whether the flow ratio Qϕ exceeds a defined flow ratio threshold Qϕ min, whether the pressure ratio Qp exceeds a defined pressure ratio threshold Qp min, or whether the current pressure pcurrent exceeds the defined pressure threshold pmax, respectively. To ensure that the maximum pressure pmax is not exceeded, the flow ratio threshold Qϕ min or the pressure ratio threshold Qp min, respectively, is defined based on the defined maximum pressure pmax. Specifically, the flow ratio threshold Qϕ min or the pressure ratio threshold Qp min, respectively, is defined as a minimum threshold value
from the ratio of the calibration pressure pcal and the defined maximum pressure pmax. Thus, in step S42 the processor of the cloud-based HVAC center 3 checks whether
or pcurrent≤pmax, respectively. Based on user experience, a damper is considered noisy at fluid speed through the damper of
thus, the maximum pressure pmax is set to a value where the fluid speed through the dampers is limited to
Depending on the embodiment and/or application, the maximum pressure pmax is determined in a calibration phase through system measurements at a maximum fluid speed through the dampers of
Alternatively, the maximum pressure pmax is determined based on Bernoulli's equations for fluid dynamics,
where ρ is the density of the fluid, and C is a constant that depends on the actual installation. The values of measurement-based maximum pressure pmax, constant C, and/or fluid density ρ are determined and provided by the processor of the cloud-based HVAC center 3, e.g. from a database arranged in or connected to the cloud-based HVAC center 3 and assigned to the respective HVAC system 1.
Furthermore, the processor of the cloud-based HVAC center 3 transmits to the HVAC system 1, e.g. to the local HVAC system controller 12 or the actuators A1, A2, A3, Ai or their controllers C1, C2, C3, Ci or communication modules, respective altitude values h for the flow sensors F1, F2, F3, Fi, F (i.e. their specific altitudes h of their location, as stored in the database arranged in or connected to the cloud-based HVAC center 3) for adjusting the measurement of air flow by the sensors F1, F2, F3, Fi, F. With regards to using the value of altitude h for adjusting the measurement of the (air) flow sensors F1, F2, F3, Fi, F, it shall be explained here that flow sensors F1, F2, F3, Fi, F that rely on measuring a differential pressure Δp for determining the flow ϕ=c·√{square root over (Δp)}, where c is a constant value, e.g. c=10, are dependent on air density and, thus, altitude h. The air density ph [kg/m3] or air pressure ph[hPa], respectively, at a particular altitude h is defined by the international barometric formula
respectively. The measurement error for the differential pressure Δp from a sensor calibrated for sea level (h=0 m) is approximately 1% for every 100 m altitude. For example, at 500 m above sea level, the measured differential pressure Δpmeasured has an error of approximately 5%, i.e. Δpmeasured=0.95·Δpreal. Consequently, the error for the flow ϕ=c·√{square root over (0.95·Δp)}=c·0.975·√{square root over (Δp)} is approximately 2.5%. The altitude value h is used to adjust/correct the measurement of the differential pressure Δpadjusted=Δpmeasured·8809/(8809−h) and, thus, the flow ϕadjusted=c·√{square root over (Δpmeasured·8809/(8809−h))} measured by the respective flow sensors F1, F2, F3, Fi, F.
If the pressure criterion is not met, i.e. if the flow ratio Qϕ does not exceed the defined flow ratio threshold Qϕ>Qϕ min or the pressure ratio Qp does not exceed the defined pressure ratio threshold Qp>Qp min or the current pressure pcurrent exceeds the defined pressure threshold pcurrent>pmax, respectively, the processor of the cloud-based HVAC center 3 continues calculating an (increased) minimum damper position Posmin; otherwise, the processor of the cloud-based HVAC center 3 proceeds in step S5 by setting the minimum damper position Posmin for the HVAC system 1, as described above.
In step S43, the processor of the cloud-based HVAC center 3 sets an increased minimum damper position Posmin. The increased minimum damper position Posmin=Posmin_previous+Posincrement is set by adding an incremental value Posincrement, e.g. Posincrement=10 or Posincrement=2%, to the previous value of the minimum damper position Posmin_previous.
Subsequently, the processor of the cloud-based HVAC center 3 continues in step S5 by setting the minimum damper position Posmin for the dampers D1, D2, D3, Di and repeating iteratively steps S2, S3, S4, and S5, until the demands for all zones Z1, Z2, Z3, are met without exceeding the defined maximum pressure pmax in the HVAC system 1, as described above.
As indicated schematically in
using the calibration flow values ϕ1calj, ϕ2calj, ϕ3calj, ϕicalj at the adjusted damper positions jadjusted=└Pos1adj,Pos2adj,Pos3adj,Posiadj┘ of the respective damper D1, D2, D3, Di and continues further (calculatory) iterations, until the pressure criterion is met in step S42.
In step S1, calibration values of the HVAC system 1 are determined and stored, as described above.
In step SA, the controllers C1, C2, C3, Ci of the actuators A1, A2, A3, Ai determine the air velocity through the respective dampers, D1, D2, D3, Di using a velocity sensor, e.g. a velocimeter combined with or based on the flow sensor F1, F2, F3, Fi.
In step SB, the controllers C1, C2, C3, Ci control the respective motor M1, M2, M3, Mi of the actuator A1, A2, A3, Ai to adjust the position of the respective damper D1, D2, D3, Di such that the air velocity vi through the respective damper D1, D2, D3, Di does not exceed a defined maximum air velocity threshold vi≤vmax. Based on user experience, a damper D1, D2, D3, Di is considered noisy at an air velocity exceeding
In steps S2, S3, S4, and S5, the processor of the cloud-based HVAC center 3 sets iteratively a minimum damper position Posmin for the HVAC system 1, as described above.
In step SC, the processor of the cloud-based HVAC center 3 or the local HVAC system controller 12 adjusts the damper position of the damper D1, D2, D3, Di with the greatest current damper position Pos1, Pos2, Pos3, Posi, i.e. with the largest corresponding opening or orifice, to a defined maximum position Posmax, e.g. for an opening of 80%, Posmax=80%.
In step SD, the processor of the cloud-based HVAC center 3 or the local HVAC system controller 12 adjusts the fan speed of the fan 11 to meet the demand of the zone Z1, Z2, Z3, Zi regulated by the damper D1, D2, D3, Di with the opening set to the defined maximum position Posmax in step SC. In other words, the fan speed is adjusted such that the air flow ϕ1, ϕ2, ϕ3, ϕi required by the demand for the respective zone Z1, Z2, Z3, Zi is met at the set maximum position Posmax of the damper D1, D2, D3, Di for that zone Z1, Z2, Z3, Zi. As illustrated in
In a further embodiment, the processor of the cloud-based HVAC center 3 is configured to generate and transmit to an operator or user of the HVAC system 1 various HVAC control reports. For example, the HVAC control reports are transmitted to one or more communication terminals registered with the cloud-based HVAC center 3 for the respective HVAC system 1, e.g. to mobile communication devices such as mobile radio (cellular) telephones, tablets, or other mobile or fixed computerized communication devices, using e-mail, SMS (Short Messaging Services), or other messaging services and formats. The HVAC control reports include calibration reports, confirmation reports, and/or warning or error reports. The calibration reports include information about the determined and stored calibration values of HVAC system parameters and the associated calibration pressure pcal. The confirmation reports include determined totals system flow ϕtotal and flow values ϕ1, ϕ2, ϕ3, ϕi, current damper positions Pos1, Pos2, Pos3, Posi, current system pressure pcurrent, defined maximum pressure pmax, and/or determined and set minimum damper position Posmin. The warning or error reports include information about malfunctioning dampers D1, D2, D3, Di, failed system calibration, failed system settings, etc.
It should be noted that, in the description, the computer program code has been associated with specific functional modules and the sequence of the steps has been presented in a specific order, one skilled in the art will understand, however, that the computer program code may be structured differently and that the order of at least some of the steps could be altered, without deviating from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5705734 | Ahmed | Jan 1998 | A |
6250560 | Kline | Jun 2001 | B1 |
6581847 | Kline | Jun 2003 | B2 |
7665670 | Ahmed | Feb 2010 | B2 |
8374725 | Ols | Feb 2013 | B1 |
8483883 | Watson | Jul 2013 | B1 |
20010042792 | Kline | Nov 2001 | A1 |
20050258260 | Ahmed | Nov 2005 | A1 |
20120253524 | Norrell | Oct 2012 | A1 |
20130201316 | Binder et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2014051634 | Apr 2014 | WO |
Entry |
---|
Johnson Controls, Damper and Actuator Manual 268.1, copyright 1991 Johnson Controls, Inc., Code No. LIT-2681H352. |
International Search Report and Written Opinion issued by International Searching Authority in corresponding International application No. PCT/EP2015/073573, dated Jan. 20, 2016. |
Number | Date | Country | |
---|---|---|---|
20160131381 A1 | May 2016 | US |