The invention relates to a method for controlling a pressure fluid operated percussion device which allows a tool movable in its longitudinal direction with respect to a body of the percussion device to be installed therein, and which comprises a working chamber and therein a transmission piston installed movably in the axial direction of the tool in order to suddenly compress the tool in its longitudinal direction by a pressure of pressure fluid influencing the transmission piston such that a stress pulse is generated in the tool in its longitudinal direction and the stress pulse progresses through the tool into a material to be broken, a control valve which includes inlet and discharge channels for conveying pressure fluid to and from the percussion device and which also includes a movably installed switch element provided with channels for switching, via the channels of the switch element, the inlet channels and, similarly, the discharge channels to alternately feed pressure fluid into the working chamber to influence the transmission piston and, similarly, to discharge pressure fluid that influenced the transmission piston from the working chamber.
The invention further relates to a percussion device which allows a tool to be installed therein movably in its longitudinal direction with respect to a body of the percussion device, and which comprises a working chamber and therein a transmission piston installed movably in the axial direction of the tool in order to suddenly compress the tool in its longitudinal direction by a pressure of pressure fluid influencing the transmission piston such that a stress pulse is generated in the tool in its longitudinal direction and the stress pulse progresses through the tool into a material to be broken, a control valve which includes inlet and discharge channels for conveying pressure fluid to and from the percussion device and which also includes a movably installed switch element provided with channels for switching, by means of the switch element and via the channels thereof, the channels to alternately convey pressure fluid into the working chamber to influence the transmission piston and, similarly, to discharge pressure fluid that influenced the transmission piston from the working chamber.
In the claimed percussion device, a stress pulse is generated such that a transmission piston residing in a separate working chamber is arranged to be influenced by the pressure of pressure fluid, most preferably relatively suddenly. The influence of the pressure pushes the transmission piston towards a tool. Consequently, the tool becomes compressed, whereby a stress pulse is generated in the tool and the stress pulse progresses therethrough, and when the tip of the tool is in contact with rock or another hard material to be broken, makes the material break down. In order to control its striking operation, the percussion device may utilize a rotatable or reciprocally linearly movable switch element which typically comprises successive openings to ultimately open a connection from a pressure fluid source to the transmission piston of the percussion device and, similarly, from the transmission piston to a pressure fluid reservoir. When drilling conditions change, or for some other reasons, it is sometimes desirable to change the frequency at which stress pulses are generated, which is easy to carry out by adjusting the speed of movement of the switch element. However, a problem arises in that when the speed of movement of the switch element increases, the times during which pressure fluid channels are open become shorter. This contributes to changing the operation and behaviour of the device, which is not desirable.
An object of the present invention is to provide a method and a percussion device so as to enable the generation times of a stress pulse to be adjusted as desired and, for example, the shortenings of the times during which pressure fluid channels are open due to an increase in the speed of movement to be compensated for.
The method of the invention is characterized in that in order to adjust the length of the stress pulse, the time during which the pressure of the pressure fluid influencing the transmission piston and, therethrough, pressing the tool, influences the tool is adjusted. The percussion device of the invention is characterized in that it comprises an adjustment element provided with channels for pressure fluid, that the switch element is arranged to convey pressure fluid to and from the working channel via the channels of the adjustment element, and that it comprises adjustment means for adjusting, by means of the adjustment element, the influence time of the pressure of the pressure fluid being fed to the percussion device via the control valve and influencing the transmission piston and, therethrough, compressing the tool.
An idea underlying the invention is that the influence time of the pressure of the pressure fluid is adjusted by adjusting either the time during which the pressure fluid inlet channel/s is/are open and/or the speed of movement of the switch element of the control valve. The idea underlying an embodiment of the invention is that different sides of the switch element of the control valve, in the pressure fluid inlet and discharge channels, are provided with at least partly aligned openings, and at least one side of the switch element is provided with an adjustment element movable in the direction of movement of the switch element such that by moving the adjustment element, the mutual position of the openings may be adjusted so that the length of parts of the aligned openings in the direction of movement changes. In accordance with a second embodiment of the invention, the adjustment is carried out with respect to the speed of movement of the switch element such that the length of the parts of the aligned openings in the direction of movement of the switch element is proportional to the speed of movement. This adjusts the time during which the pressure fluid channels are open proportionally to the speed of movement such that the time during which the channels are open, and thus the generation time of a stress pulse, is substantially always the same, irrespective of the speed of movement. In accordance with a third embodiment of the invention, the adjustment element is installed outside the switch element of the control valve. In accordance with a fourth embodiment of the invention, the adjustment element is installed as an integral part of the switch element.
An advantage of the invention is that the length of the stress pulses can be adjusted according to given drilling conditions. A further advantage is that when adjusting the frequency of the stress pulses, it is possible at the same time to adjust the length of stress pulses and thus, irrespective of a change in the frequency, to generate stress pulses of a desired length.
The invention will be described in closer detail in the accompanying drawings, in which
a and 1b schematically show embodiments of a percussion device of the invention,
a and 2b schematically show an embodiment of the invention,
a and 3b schematically show another embodiment of the invention, and
a is a schematic sectional view showing a percussion device 1 according to the invention, comprising a body 2 provided with a working chamber 3 therewithin, and in the working chamber 3 a transmission piston 4. The transmission piston 4 is located co-axially with a tool 5, and it may move in the axial direction thereof such that the transmission piston 4, during generation of a stress pulse, comes into contact with the tool 5 or with a shank known per se attached thereto. A side of the transmission piston 4 opposite to the tool is provided with a pressure surface facing the working chamber 3. In order to generate a stress pulse, pressurized pressure fluid is fed from a pressure source, such as a pump 6, to the working chamber 3 along an inlet channel 7 via a control valve 8. The control valve comprises a movable switch element (shown in more detail in
In the case shown in
b is a schematic sectional view showing a second percussion device 1 according to the invention, comprising a body 2 provided with a working chamber 3 therewithin, and in the working chamber 3 a trans-mission piston 4. In this embodiment, the transmission piston 4 is influenced by a continuous pressure of pressure fluid via a channel 9a. With respect to the transmission piston 4, the channel 9a is connected with an auxiliary chamber 3a residing on a side opposite to a tool 5. Similarly, for the operation of the percussion device and with respect to the transmission piston 4, the working chamber 3 resides on a side of the tool 5. Hence, in order to generate a stress pulse, pressure fluid is discharged from the working chamber 3 for a period of time of a desired length, so that the pressure of the pressure fluid in the auxiliary chamber pushes the transmission piston towards the tool. At the same time, the tool becomes compressed, and a stress pulse is generated. Similarly, the transmission piston 4 is returned to its original position by feeding pressure fluid into the working chamber 3, in which case the transmission piston stops pressing the tool and the stress pulse dies away. In the case of
a and 2b schematically show an embodiment of the invention. The figures only show a part of e.g. a control valve 8 equipped with a reciprocally movable switch element 8a and a body 2 of a percussion device. One side of the control valve 8 is provided with pressure fluid inlet channels 7 and discharge channels 9 which terminate at the switch element 8a and whose openings 7a and 9a facing the switch element 8a are included in the control valve 8. In this example, these channels are fixedly formed in the body 2 of the percussion device, so that their position with respect to the body 2 is always constant. On the other side of the switch element 8a with respect to the body 2 of the percussion device, the control valve 8 comprises an adjustment element 14 which is parallelly with the direction of movement B of the switch element 8a reciprocally movable, as shown by arrow C, and which similarly comprises channels 7′ and 9′ connected with the working chamber 3 of the percussion device 1. Similarly, their openings 7′a and 9′a included in the control valve are directed towards the switch element 8a. The switch element 8a of the control valve 8 is further provided with channels 15 therein having the form of a groove therein formed in a surface thereof or an opening provided therethrough, such that openings 15a and 15b of these channels alternately connect the channels 7 and 7′ and, similarly, the channels 9 and 9′ such that pressure fluid flows to and from the working chamber 3.
In the situation shown in
In the situation according to
By arranging the adjustment element 14 in different positions, it is possible to produce pressure fluid influence times of different lengths at a certain speed of movement of the switch element 8a. It is thus possible to adjust the time during which the pressure fluid influences the tool 5 via the transmission piston 4 by adjusting the position of the adjustment element 14 and, therethrough, the mutual position of the openings of the pressure fluid inlet and discharge channels with respect to one another.
When the movement of the switch element 8a of the control valve 8 is sped up, a result is an increase in the frequency of stress pulses. Consequently, however, the pressure fluid influence time in the position shown in
a and 3b schematically show another embodiment of the invention. The figures further show only a part of a switch element 8a which moves, i.e. rotates, in the same direction, e.g. as indicated by arrow B′, as well as of a body 2 of a percussion device. A control valve 8, on one side of the switch element 8a, is provided with pressure fluid inlet and discharge channels 7 and 9 whose openings 7a and 9a are situated towards the switch element 8a. The other side of the switch element 8a in the body 2 of the percussion device is provided with other pressure fluid channels 7′ and 9′, respectively, connected with a working chamber 3. Similarly, openings 7′a and 9′a of these channels are situated towards the switch element 8a. The inlet and discharge channels 7 and 9 and, similarly, the channels 7′ and 9′ reside immovably with respect to one another.
The switch element 8a of the control valve 8 is therein provided with channels 15 which have the shape of a groove formed in a surface of the switch element 8a or an opening provided therethrough. The switch element 8a further comprises an adjustment element 14′ which moves along with the switch element and which is movable with respect the switch element as indicated by arrow C′ such that the adjustment element is similarly provided with channels 15′ which have the shape of a groove formed in a surface thereof or an opening provided therethrough and which are connected with the channels 15. The channels 15 and 15′ alternately connect the channels 7 and 7′ and, similarly, the channels 9 and 9′ such that pressure fluid flows to and from the working chamber 3.
In the situation shown in
In the situation of
In order to prevent the movement of the adjustment element 14′ with respect to the switch element 8a of the control valve 8 from causing throttling in the flow of pressure fluid, the openings 15b and 15′a of the channels 15 and 15′ of the adjustment element 14′ and the switch element 8a, facing one another, are elongated in the direction of movement of the switch element and the adjustment element 14′ included therein such that across the entire adjustment range and even at their smallest, the portions of the openings thereof that are simultaneously in alignment are at least as large as the openings 15a and 15′b of the channels 15 and 15′ on the side of the openings 7a and 7′a as well as 9a and 9′a of the channels 7 and 7′ and the channels 9 and 9′, respectively.
Most preferably, the position of the adjustment element 14 is connected to be automatically dependent on the speed of the switch element 8a of the control valve 8. In such a case, a rotation speed range is determined for the switch element 8a, which includes the minimum and maximum values for rotation speed such that the rotation speed of the switch element 8a is to reside between these values. When the rotation speed is at its lowest, the adjustment element 14 is in the position shown in
The invention has been disclosed in the description and in the drawings only by way of example, and it is by no means restricted thereto. Different details of embodiments may be implemented in different ways and they may be combined with one another. The embodiments shown in
Number | Date | Country | Kind |
---|---|---|---|
20050012 | Jan 2005 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2006/050006 | 1/4/2006 | WO | 00 | 5/14/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/072666 | 7/13/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3670826 | Hanson et al. | Jun 1972 | A |
4023626 | Salmi et al. | May 1977 | A |
4699223 | Noren | Oct 1987 | A |
5117921 | Bartels et al. | Jun 1992 | A |
5129466 | Bartels et al. | Jul 1992 | A |
5844133 | Goto et al. | Dec 1998 | A |
6505689 | Poysti et al. | Jan 2003 | B1 |
6742605 | Martini | Jun 2004 | B2 |
6799641 | Lyon et al. | Oct 2004 | B1 |
7013996 | Keskiniva et al. | Mar 2006 | B2 |
20060032649 | Keskiniva et al. | Feb 2006 | A1 |
20060175091 | Koskimaki et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
2003-0261 | Sep 2004 | FI |
2003-1036 | Feb 2005 | FI |
2190147 | Nov 1987 | GB |
814716 | Mar 1981 | SU |
WO2004073933 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20090266568 A1 | Oct 2009 | US |