The present invention relates to vehicle transmissions, and more particularly to methods for controlling rate of change of speed ratios in continuously variable transmissions.
Unlike manual and automatic transmissions that provide discrete speed ratios, a continuously variable transmission (CVT) provides an uninterrupted range of speed ratios of engine speed to vehicle speed. When a driver requests more power by pressing down on a vehicle's accelerator pedal, the CVT changes the speed ratios at a very fast rate. The fast rate of change in the CVT causes excessive rise in engine speed and NVH (noise, vibration, and harshness) levels in the vehicle. Specifically, the excessive rise in engine speed is followed, after a short delay, by a sudden acceleration of the vehicle. This phenomenon is known as “Rubber-band Feel” and is undesirable.
A method for controlling a rate of change of speed ratios in a continuously variable transmission (CVT) comprises sensing a vehicle speed, sensing an engine speed, and sensing a change in a position of an accelerator pedal. A desired engine speed is determined based on the change in the position of the accelerator pedal, the vehicle speed, and the engine speed. A target engine speed is increased at a first rate to a predetermined value, wherein the target engine speed corresponds to a speed ratio. The target engine speed is held at the predetermined value. A difference between the held target engine speed and an actual engine speed is measured, and the target engine speed is increased to the desired engine speed at a second rate when the difference substantially equals a predetermined threshold, wherein the second rate is less than the first rate.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The problem of excessive rise in engine speed and NVH when a driver requests more power can be solved by controlling a rate of change of CVT ratio. The control is achieved by managing a change in an engine speed set-point or a target engine speed that corresponds to a desired CVT ratio. Specifically, engine speed is raised from a steady state to a desired final speed in three steps: (1) a “quick rise” step, wherein the set-point is quickly raised to a predetermined value; (2) a “hold” step, wherein the set-point is briefly held at the predetermined value; and (3) a “smooth rise” step, wherein the set-point is smoothly raised to the desired final speed.
Referring now to
When a driver requests more power by pressing down on an accelerator pedal, the driver input sensing module 12 calculates a rate of change in pedal position. Based on the rate, the engine speed, and the vehicle speed, the control module 18 determines a desired engine speed that corresponds to the driver's request. The control module 18 determines the desired engine speed using a method disclosed in U.S. patent application Ser. No. 10/916,893, filed on Aug. 12, 2004 that is incorporated herein by reference in its entirety.
The control module 18 calculates a difference between the desired engine speed and a current engine speed. The control module 18 determines a rate of increase of engine speed that is necessary to attain the desired engine speed. If the rate of increase is greater than a predetermined threshold rate, the control module 18 quickly raises an engine speed set-point to a predetermined value. This value is between the current engine speed and the desired engine speed.
The control module 18 holds the set-point at the predetermined value. The CVT 20 responds to the rise in the set-point and increases the engine speed. The control module 18 monitors a difference between the held set-point and an actual engine speed. When the difference reaches a predetermined threshold, the control module 18 smoothly raises the set-point to the desired engine speed. The CVT 20 responds by smoothly increasing the engine speed to the desired engine speed.
Referring now to
In
The control module 18 determines a rate of raising engine speed to attain the desired engine speed 32 in step 108. The control module 18 determines if the rate is greater than a predetermined threshold in step 110. If false, the control module 18 concludes that the driver's request is for a gradual change, and the method 100 continues in the steady state mode 38. If true, the method 100 switches from the steady state mode 38 to a quick rise mode 40 as shown in
In step 114, the method 100 enters a hold mode 42 as shown in
The control module 18 determines whether a difference between the set-point and the engine speed approaches a threshold value in step 116. If false, the control module 18 continues to hold the set-point at the predetermined value in step 114. The CVT continues to increase the engine speed. If true, the method 100 enters a smooth rise mode 44 as shown in
The control module 18 smoothly raises the set-point to the desired engine speed in step 118. Accordingly, the CVT 20 gradually increases the engine speed. The control module 18 determines whether the engine speed has reached the desired engine speed in step 120. If false, the control module 18 continues to raise the set-point. The CVT 20 continues to increase the engine speed. If true, a steady state is reached, and the method 100 returns to step 104.
Referring now to
State 3 is a hold state 56 wherein the set-point is held at the predetermined value when a difference between the set-point and the engine speed is less than a threshold. State 2 transitions to State 3 as shown in 64 when the controlled speed attains a predetermined “target” value. State 3 transitions to State 2 as shown at 66 when the driver requests more power in addition to a prior request for more power. This may occur, for example, when the driver initially requests more power and subsequently floors the accelerator pedal.
State 4 is a smooth rise state 58 wherein the engine speed gradually increases from the held set-point value in State 3 to a desired engine speed that corresponds to the driver's request. State 3 transitions to State 4 as shown at 68 when the difference between the set-point and the engine speed approaches the threshold. State 4 transitions to State 2 as shown at 70 when the driver requests more power in addition to a prior request for more power. This may occur, for example, when the driver initially requests more power and subsequently floors the accelerator pedal. State 4 transitions to state 1 as shown at 72 when the engine speed equals the desired speed, and a steady state 52 is reached.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4658360 | Osanai et al. | Apr 1987 | A |
4817469 | Shigematsu et al. | Apr 1989 | A |
5114383 | Hirano et al. | May 1992 | A |
6066070 | Ito et al. | May 2000 | A |
20060035749 | Kanafani et al. | Feb 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070142167 A1 | Jun 2007 | US |