This invention relates to a method to control a speed of a vehicle slide door configured to be slidably moved by a power slide device.
Various types of power slide devices having a motor, a wire drum to be rotated by the motor for winding and paying out a wire cable, and a clutch mechanism disposed between the motor and the wire drum, and are constructed so as to cause a vehicle slide door slide toward an opening direction or a closing direction through rotating the wire drum have been proposed so far.
The sliding speed of a door slidingly moved by the power slide device is feedback controlled for matching it with a predetermined reference speed. For example, when the sliding speed is “80” against a reference speed of “100” the door is accelerated and when the sliding speed is “120” against the reference speed of “100” the door is decelerated.
Under such conventional feedback control, a “motor speed” obtained based on a rotational speed of the motor or a “drum speed” obtained based on a rotational speed of the wire drum has been utilized as a sliding speed of the slide door.
A motor speed or a drum speed are not always the same with an actual speed of the slide door (door speed, hereinafter). It is common to assume that the drum speed corresponds to that of the door, however, as the slide door can move independently with respect to the wire drum due to the effect of a tension mechanism for the wire cable, the door speed may be faster or slower than the drum speed. Similarly, as the motor moves the slide door by way of the wire drum, the door speed of the slide door varies recording a faster speed or slower speed than that of the motor due to similar reasons. In addition, as the clutch mechanism is interposed between the motor and the wire drum, a difference between the motor speed and the door speed may be amplified further depending on looseness present in the clutch mechanism. A factor which effects such difference between the motor speed or the drum speed and the door speed will be called as “connection looseness”, hereinafter.
After the motor speed reached the reference speed the motor was kept at a constant aped to match the reference speed, however, the slide door continuously increased its speed by a rate corresponding to the connection looseness and then turned to reduce its speed due to a braking effect of the motor brought about by the removal of the connection looseness. At the same time, as the connection looseness had been absorbed the motor advanced its speed because of a pulling effected by the slide door. When such acceleration in the motor speed was detected, the motor speed was reduced in accordance with the feedback control. In that case, however, the speed difference resulting from the connection looseness brought about repeated acceleration and deceleration of the motor speed recording alternately large ridges and troughs in the door speed.
Such a repetition of large ridges and troughs in the door speed appears larger number of times and lasts longer proportionately to the speed difference between the door speed and the motor speed effected when the motor speed is accelerated toward the reference speed. In other words, as no preceding acceleration of the door speed resulting from the connection looseness occurs in opening the door of a vehicle placed in a nose-down inclined state where an external force acts to decelerate the slide door, the variation in the door speed may be confined within a negligible range resulting in a smooth and stable movement of the slide door.
Such undesirable change in the door speed as shown in
Therefore, the object of this invention is to provide a method to restrain such a difference between the door speed and the motor speed as observed in accelerating the motor speed and to move the slide door smoothly at a stable speed.
Furthermore, the object of this invention is to provide a power slide device constructed into a rational structure comprising a mechanism to detect an actual rotational speed of the motor and also a mechanism to detect an actual rotational speed of the wire drum.
Embodiment of the present invention will be described with reference to the drawings.
A power unit 20 of the power slide device in accordance with this invention may be arranged in an inner space 50 (
The power unit 20, as shown in 5 through 7, is provided with a wire drum 30 for winding and paying out wire cables, and the wire drum 30 is connected with base ends of two wire cables, that is, a door-opening cable 21A and a door-closing cable 21B. When the wire drum 30 rotates in a door-opening direction, the door-opening cable 21A is wound up, and the door-closing cable 21B is paid out, and when the wire drum 30 rotates in a door-closing direction, the door-opening cable 21A is paid out, and the door-closing cable 21B is wound up.
The opening cable 21A is pulled out from a front lower position of the slide door 11, namely the vicinity of the lower bracket 18, toward a vehicle body side (on the side of the lower bracket 18) out of the slide door 11 as shown in
The closing cable 21B is pulled out from a rearward, middle height position of the slide door 11, namely the vicinity of the center bracket 19 toward a vehicle body side (on the side of the center bracket 19) out of the slide door 11. The closing cable 21B pulled out from the slide door 11 is extended frontward inside the center rail 16 after passing on a pulley (not shown) of the center bracket 19, and is then fixed to the front side of the center rail 16 or the vehicle body 10 in the vicinity of the front side portion of the center rail. With this arrangement, when the closing cable 21B is wound under a door-open state the slide door 11 slides forward (toward the door-closing direction) by way of the center bracket 19.
In case where the power unit 20 is installed in the interior space of the quarter panel 15, the free end of the opening cable 21A is connected to the center bracket 19 of the slide door 11 by way of a front pulley 22 pivoted at the front part of the center rail 16 as shown in
As shown in
The clutch mechanism 31 is irrelevant to the essence of the application of this invention and any type of clutch mechanism may be used. However, for the present application the clutch mechanism described in detail in the U.S. patent application Ser. No. 10/971707 has been applied. The clutch mechanism 31 is such a type of clutch provided with an electromagnetic coil 60 which can be turned on or off through an electric control. Briefly, the clutch mechanism 31 shifts to a clutch connecting state when the electromagnetic coil 60 is turned on and to a clutch disconnecting state when the coil 60 is turned off. Furthermore, as will be described later, the clutch mechanism 31 has a characteristic that a clutch disconnecting state (a brake-clutch connecting state) can be maintained even if the electromagnetic coil 60 has been turned off.
The electromagnetic coil 60 is formed in cylindrical shape and disposed around the support shaft 28. The electromagnetic coil 60 is fixed onto the housing 29 and the support shaft 28 being rotatable with respect to the electromagnetic coil 60. The worm wheel 26 is rotatably supported by the outer periphery of the electromagnetic coil unit 60. As shown in
A cam member 63 (
In
A fixed gear member 69 is provided on left side of the moving gear member 65, and between the moving gear member 65 and the fixed gear member 69, there is provided a clutch releasing spring 70 which presses the moving gear member 65 to the right side. The left surface of the fixed gear member 69 is fixed to the wire drum 30, and both of them integrally rotate. The wire drum 30 is fixed to the left end of the support shaft 28 so as to integrally rotate with the support shaft 28.
A fixed circular gear portion 71 is provided on the right surface of the fixed gear member 69. When the moving gear member 65 slides leftward along the support shaft 28 against the elastic force of the clutch releasing spring 70, the moving circular gear portion 68 engages with the fixed circular gear portion 71. A state in which the gear portion 68 and the gear portion 71 are engaged each other is a normal clutch connecting state of the clutch mechanism 31, and the rotation of the worm wheel 26 is transmitted to the wire drum 30. In contrast to this, when the moving gear member 65 slides rightward for the support shaft 28 by the elastic force of the clutch releasing spring 70, the moving circular gear portion 68 breaks away from the fixed circular gear portion 71, and the clutch is put into a clutch disconnecting state, and the rotation of the worm wheel 26 is not transmitted to the wire drum 30.
As shown in
When the moving gear member 65 slides rightward by elastic force of the clutch releasing spring 70, normally as shown in
When the motor 24 and the electromagnetic coil unit 60 are both turned off in the normal clutch connecting state of
In the brake-clutch connecting state of
The abutment of the top portion 72A against the clutch holding portions 64D can be released through moving the moving gear member 65 upward as shown in
The housing 29 comprises a metal base plate 120, a metal or plastic cover plate 121, and a plastic housing body 122 disposed between the plates 120, 121. A first space 123 is defined between the base plate 120 and the body 122, and a second space 124 between the cover plate 121 and the body 122. Within the first space 123 the wire drum 30 and the clutch mechanism 31 are housed.
As shown in
As shown in
A drum rotor element 132 and a motor rotor element 133 both of which are made of a magnetic body are disposed on the drum rotor 126 and the motor rotor 131, respectively.
On an outer surface of the cover plate 121 a control unit 134 is mounted. On a control board 135 of the control unit 134 a control unit 136 is provided, and also a drum speed sensor 137 to detect a rotational speed of the wire drum 30 in cooperation with the drum rotor element 132 and a motor speed sensor 138 to detect a rotational speed of the motor 24 in cooperation with the motor rotor element 133 are disposed. The sensors 137, 138 are Hall effect IC, and are disposed so as to be able to detect the rotational elements 132, 133 through windows 139, 140 formed on the cover plate 121. Also, if the sensors 137, 138 extending toward the control board 135 are disposed within the windows 139, 140, the control board 135 may snuggly fit on the cover plate 121 and distances between the sensors 137, 138 and the rotational elements 132, 133 may be reduced.
(Operation of Clutch)
Now, operation of the clutch mechanism 31 will be explained. When the electromagnetic coil 60 is off substantially no frictional resistance may be generated between the armature 61 and the electromagnetic coil 60. Under this state, if the cylindrical worm 25 is rotated by the motor 24 rotating in a forward direction the worm wheel 26 rotates clockwise in
Under the above state (
If both the motor 24 and the electromagnetic coil 60 are turned off while the slide door 11 is moving in the door-closing direction, the moving gear member 65 engaged with the worm wheel 26 stops its rotation, and the armature 61 and the cam member 63 are released from the braking resistance, and the moving gear member 65 is returned toward the right by the elastic force of the clutch releasing spring 70 while rotating the cam member 63 in the release direction (downward in
When the slide door 11 has moved to the door-closed position with normal closing control executed by the control unit 136 (in this case the clutch mechanism 31 is in the normal clutch connecting state as shown in
Now, a method to release the brake-clutch connecting state (
In case the brake-clutch connecting state is to be released manually instead of the motive power of the motor 24, after the electromagnetic coil unit 60 is turned on, the slide door 11 is manually moved. Then, the wire drum 30 is rotated, and the moving gear member 65 is also rotated through the fixed gear member 69. At this time, in the brake-clutch connecting state, though the wire drum 30 is connected to the motor 24 side, since the gap Y formed between the leg portion 66 and the engaging groove 67 allows the moving gear member 65 to freely rotate approximately six degrees for the worm wheel 26, the slide door 11 moves by slight operational force without rotating the worm wheel 26, and can rotate the moving gear member 65. Subsequently, by the rotation of the moving gear member 65, when the top portion 72A of the moving gear member 65 comes off from the clutch holding surface 64D of the cam member 63, the moving gear member 65 moves rightward by the elastic force of the clutch releasing spring 70, and the clutch returns to the clutch disconnecting state of
Under the manual release of the brake-clutch connecting state as described above, the control unit 136 outputs a signal for turning on the electromagnetic coil 60 for a give time when it detects a manual operation for clutch disengagement. Various kinds of operations may be employed for determining the manual operation for clutch disengagement; for example, a movement of a door open handle of the slide door 11 by a manual door opening operation can be a typical signal of the manual operation for clutch disengagement.
(Operation for Speed Control by the CONTROL UNIT 136)
A travel distance of the slide door 11 driven by the power unit 20 is divided roughly into three sections, i.e., an initial section from the start to a completion of acceleration, an intermediate section of substantially a constant speed, and a deceleration section as a final section. Also, in the initial section a slow speed section extending for a given time may be provided, if required.
When the slide door 11 is opened from the closed position (or closed from the open position) by the power unit 20, the motor 24 is rotated at a slow speed for a given time as may be desired, and after that the motor 24 is accelerated for a predetermined reference speed. The control unit 136 monitors the movement of the slide door 11 in this initial section to detect abnormal accelerations. Preferably, the sliding door 11 is determined to be under abnormal acceleration, when a rotational speed of the wire drum 30 measured by the drum speed sensor 137 is above a given value (of and above 120 mm/sec. on sliding speed equivalent), a difference between the rotational speed of the wire drum 30 and a rotational speed of the motor 24 measured by the motor speed sensor 138 is above a given value (of and above 400 mm/sec. on sliding speed equivalent), and acceleration of the wire drum 30 is above a given value. Also, it is preferable to determine that the sliding door 11 is under abnormal acceleration, when a rotational speed of the wire drum 30 is above a given value (of and above 120 mm/sec. on sliding speed equivalent), a difference between the rotational speed of the wire drum 30 and a rotational speed of the motor 24 is above a given value (of and above 180 mm/sec. on sliding speed equivalent), and the difference of and above a given value has been detected consecutively.
Such abnormal acceleration as described above may be caused when the sliding door 11 is in a state to receive an external force for accelerating the door. For example, the vehicle body 10 is in an inclined state, or the slide door 11 is received a manual operating force by the user. In other words, according to this invention the inclination of the vehicle body 10 can be estimated based on the results of comparison of the motor speed and the drum speed.
When the abnormal acceleration has been detected, the control unit 136 lowers a rotational speed of the motor 24 to stabilize a sliding speed of the slide door 11, and then accelerate the motor 24 again toward the reference speed. This re-acceleration of the motor 24 is preferable to be performed at a lower rate of acceleration than the initial rate.
When the control over the slide door 11 is implemented through detecting the abnormal acceleration as described above, the difference between the motor speed and the door speed of the slide door 11 in the initial section will substantially be reduced in comparison with the prior art, and as result, the slide door 11 may be traveled smoothly at a stable speed.
(Advantages)
In accordance with this invention, when the slide door 11 is slid by the power unit 20, the abnormal accelerations in the initial section from the start to the completion of acceleration can be detected by utilizing the drum speed and the motor speed. And the control unit 136 lowers a rotational speed of the motor 24 to stabilize the actual door speed of the slide door 11 when the abnormal acceleration is detected, and then the motor 24 is accelerated (preferably at a smaller rate of acceleration) again toward the reference speed. Thus, the difference between the motor speed and the door speed of the slide door 11 at the end of the initial section can be reduced substantially relative to the prior art, whereby the difference between the door speed and the motor speed brought about by the connection looseness can be reduced to enable the slide door 11 travel smoothly at a stable speed.
Also, in accordance with this invention, the wire drum 30, the clutch mechanism 31, the drum rotor 126, and the motor rotor 131 are installed within the housing 29, and the shaft 128 of the drum rotor 126 and the shaft 130 of the motor rotor 131 are disposed in parallel to the support shaft 28 of the wire drum 30. Accordingly, the drum rotor 126 and the motor rotor 131 can be mounted rationally within the housing. In addition, as the control board 135 having the control unit 136 which performs control of the motor 24 is attached to the outer surface of the cover plate 121 of the housing 29, and the drum speed sensor 137 and the motor speed sensor 138 are disposed on the control board 135, rational placing of the sensors 137, 138 can be materialized.
Furthermore, as the drum speed sensor 137 and the motor speed sensor 138 are disposed in the windows 139, 140 formed on the cover plate 121, the control board 135 can be fit snuggly to the cover plate 121 and also distances between the sensors 137, 138 and the rotational elements 132, 133 can be reduced.
In addition, as the drum rotor 126 is configured to rotate together with the wire drum 30 by way of the support shaft 28, and the motor rotor 131 is configured to rotate together with the motor 24 by way of the worm wheel 26 rotated by the motor 24, the drum rotor 126 can accurately reflect rotation of the wire drum 30 and similarly the motor rotor 131 can accurately reflect rotation of the motor 24, whereby accuracy of measurements can be expected to enhance.
Finally, as the drum rotor 126 and the motor rotor 131 can be disposed so as to avoid overlap in an axial direction of the support shaft 28, any enlargement of the housing 29 can be restrained.
Number | Date | Country | Kind |
---|---|---|---|
2004-083667 | Mar 2004 | JP | national |
2004-084045 | Mar 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5076016 | Adams et al. | Dec 1991 | A |
6009671 | Sasaki et al. | Jan 2000 | A |
6134836 | Kawanobe et al. | Oct 2000 | A |
6199322 | Itami et al. | Mar 2001 | B1 |
6425206 | Noda et al. | Jul 2002 | B1 |
6580243 | Itami et al. | Jun 2003 | B2 |
6799669 | Fukumura et al. | Oct 2004 | B2 |
6877280 | Yokomori | Apr 2005 | B2 |
7309971 | Honma et al. | Dec 2007 | B2 |
7402971 | Averitt | Jul 2008 | B2 |
7422094 | Yokomori | Sep 2008 | B2 |
20040103585 | Yokomori | Jun 2004 | A1 |
20040123525 | Suzuki et al. | Jul 2004 | A1 |
20040189046 | Kawanobe et al. | Sep 2004 | A1 |
20050150167 | Yokomori | Jul 2005 | A1 |
20050161973 | Yokomori | Jul 2005 | A1 |
20050179409 | Honma et al. | Aug 2005 | A1 |
20060022628 | Okumatsu et al. | Feb 2006 | A1 |
20060112643 | Yokomori et al. | Jun 2006 | A1 |
20060137136 | Imai et al. | Jun 2006 | A1 |
20060150515 | Shiga | Jul 2006 | A1 |
20060225358 | Haag et al. | Oct 2006 | A1 |
20070163857 | Yokomori | Jul 2007 | A1 |
20070201843 | Takahashi | Aug 2007 | A1 |
20080000161 | Nagai et al. | Jan 2008 | A1 |
20080061720 | Takahashi | Mar 2008 | A1 |
20080178422 | Imai et al. | Jul 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20060112643 A1 | Jun 2006 | US |