This disclosure relates to a method for controlling a subsidence area caused by underground mining adjoining open-pit mine, particularly to a method for controlling a subsidence area caused by underground mining adjoining open-pit mine used in the subsidence area incurred by underground mining in a collaborative process of open-pit mining and underground mining.
In recent years, underground mining in coal mines has resulted in large subsidence areas. To treat such subsidence areas, filling materials outside the mining area usually have to be transported to fill and cover fractures of subsidence area caused by underground mining, and the costs of transportation and material are high. In view of the above problems, this disclosure provides a method for controlling a subsidence area caused by underground mining adjoining open-pit mine, which can reduce costs and expenses, and effectively control the subsidence area as well. The method is simple and easy to operate, low cost, and has important practical significance and wide application prospects.
Technical Problem: the purpose of this disclosure is to overcome the drawbacks in the prior art, and to provide a method for controlling a subsidence area caused by underground mining adjoining open-pit mine, with simple construction, local materials, and low cost.
Technical Scheme: to achieve the above-mentioned technical objective, the method for controlling a subsidence area caused by underground mining adjoining open-pit mine in this disclosure comprises the following steps:
c. after all medium and small fractures and large fractures in the subsidence area are filled, compacting the pit bottom of the subsidence area dynamically, and then filling the subsidence area with the screened large rock blocks to an elevation at the distance of 2 m from the ground surface, filling the subsidence area further with small rock blocks screened from the strippings till all of subsidence area are covered by the large rock blocks, then grouting the cement mortar into the subsidence area to an elevation at the distance of 1 m from the ground surface; after the cement mortar is completely solidified, covering the filled cement mortar with the soil screened from the strippings, and compacting in layers at intervals of about 0.3 m, till the filling surface is flush with the ground surface; and
d. new medium and small fracture zones, large fracture zones and surface subsidence area are formed along with further advance of the underground mining face, repeat the steps a, b and c till all fractures and subsidence areas disappear and the collapse of the ground surface stops.
The medium and small fracture zones and the large fracture zones are backfilled and compacted in layers, wherein the ratio of the particle size of the rock used for the backfilling to the width of the current fracture is smaller than 1:3 in the backfilling process, and the compaction in layers to the surface soil and the compaction to the pit bottom of the subsidence area are dynamic compaction, 3 times of point compaction, skipped compaction at interval and 1 time of full compaction.
With the advance of the underground mining face, the ground surface is backfilled timely before medium and small fracture zones and large fracture zones are formed in the ground surface; the slope of the subsidence area shall not be greater than 7° after the subsidence area is leveled, the thickness of the cement mortar grouted in the concrete layer shall not be smaller than 0.5 m, and the thickness of the soil discharged from the open-pit mine backfilled in the surface layer shall not be smaller than 1 m.
Beneficial effects: 1) the material and transportation costs of the filling materials are greatly reduced since the filling materials are obtained from the strippings produced in the adjoining open-pit mine; 2) the problems of large amount of surface space occupation and high transportation cost of the strippings produced in the mining of the open-pit mine are solved; 3) the air passages from the ground surface to the stope are blocked, air leakage from the coal mining face is prevented, and safe underground mining is ensured. The method has high practicability in the present technical field.
In the FIGURE: 1—truck; 2—coal; 3—underground mining face; 4—goaf; 5—medium and small fracture or fracture zones; 6—large fracture or fracture zone; 7—subsidence area; 8—open-pit mine, 9—end slope of open-pit mine; 10—ground surface.
Hereunder, this disclosure will be further detailed in an embodiment with reference to the drawings.
As shown in
With the advance of the underground mining face 3, the ground surface 10 is backfilled timely before medium and small fracture zones 5 and large fracture zones 6 are formed in the ground surface 10; the slope of the subsidence area 7 shall not be greater than 7° after the subsidence area 7 is leveled, the thickness of the cement mortar grouted in the concrete layer shall not be smaller than 0.5 m, and the thickness of the soil discharged from the open-pit mine backfilled in the surface layer shall not be smaller than 1 m.
First, a goaf 4 is formed in an underground mining face 3 along with the advance. Along with the collapse of overlying strata, two types of damaged zones, i.e., medium and small fracture zones 5 and large fracture zones 6, reaching to the ground surface 10 in different sizes are formed, and a surface subsidence area 7 is formed. Wherein, before the medium and small fracture zones 5, large fracture zones 6, and surface subsidence area 7 are formed in the mining process, back-filling, compaction, and leveling are carried out in each zone, the thickness of the leveled soil layer is kept above 30 cm, and the slope in each zone is controlled within 7°.
With the advance of the open-pit mine 8, the generated strippings (such as soil and rock, etc.) are transported from the pit bottom up to the subsidence area 7 by means of a truck 1 via an end slope 9 of the open-pit mine 8, the strippings are screened and separated into rock and soil on the ground surface 10, and then fractures in different widths in the subsidence area are treated respectively first:
Number | Date | Country | Kind |
---|---|---|---|
201710256261.3 | Apr 2017 | CN | national |
This application is a national phase entry under 35 U.S.C. § 371 of International Patent Application PCT/CN2017/087329, filed Jun. 6, 2017, designating the United States of America and published as International Patent Publication WO 2018/192066 A1 on Oct. 25, 2018, which claims the benefit under Article 8 of the Patent Cooperation Treaty to Chinese Patent Application Serial No. 201710256261.3, filed Apr. 19, 2017.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/087329 | 6/6/2017 | WO | 00 |