This application claims priority to EP 12197310.1, filed on Dec. 14, 2012, entitled “Method for controlling the defrost of an evaporator in a refrigeration appliance,” the disclosure of which is hereby incorporated herein by reference in its entirety.
The present invention relates to a method for controlling the defrost of an evaporator in a refrigeration appliance having a cooling circuit with a variable cooling capacity compressor. The present invention relates as well to a refrigeration appliance having a cooling circuit with a variable cooling capacity compressor and a control unit for driving said compressor.
With the term “variable cooling capacity compressor” it is meant every kind of compressor having a control unit adapted to adjust the cooling capacity thereof. Even if the term applies generally to compressors having a variable speed motor according to the different frequencies of the inverter system driving the compressor, the term applies to on/off compressors as well, in which the cooling capacity control is carried out by adjusting the percentage of compressor insertion.
EP1619456 discloses an algorithm allowing estimation of one or more thermodynamic parameters from one or more thermodynamic or electrical parameters of cooling system circuits in which a cell temperature is used for feeding an estimating algorithm which can control the compressor.
The control process disclosed by EP1619456 can be sketched as shown in
Currently no estimation is made on cooling circuit, and only heat exchanger measurements are available. Therefore current adaptive defrost algorithms cannot take in account the effect of variable cooling capacity supplied by the compressor into the frost creation process. The known algorithm make the assumption that frost generation is constant in respect of compressor run time. In the variable cooling capacity compressor this is not the case. A system control, taking advantage of variable cooling capacity compressor, could select cooling capacities lower than maximum values allowed. This would cause the frost creation process to be slower than the frost generated by a single speed compressor driven in the same way. An algorithm that doesn't take into account this factor tends to estimate the needing of a defrost procedure more frequently than necessary. This results in lowered performances.
One object of the present invention is to provide a method for controlling defrost of an evaporator which is highly reliable and needs few component or sensors. Another object is to provide a method which is particularly useful for controlling the defrost timing in refrigerators using variable cooling capacity compressors. Another object is to provide an algorithm that avoids an overestimation of frost buildup, particularly when a variable cooling capacity compressor is used.
The above objects are reached thanks to the features listed in the appended claims.
According to the invention, it is needed one input only to the algorithm, and preferably such input is the frequency of the inverter driving the compressor.
The algorithm according to the invention allows to estimate the cooling capacity of the cooling system circuit (and therefore the defrost time) from an electric parameter, particularly from the inverter frequency driving the compressor and/or the percentage of compressor insertion. The above estimation can be used to improve control logic, to replace existing sensors or to implement new functionalities. This estimation is used to extend any previously known adaptive defrost algorithms to the variable cooling capacity compressor case. This extension is implemented as a translation layer, which is interposed between the cooling capacity estimator and the previous adaptive defrost algorithm. The main advantage of the algorithm according to the invention is that it allows to extend to the variable speed compressor case the same existing adaptive defrost algorithms and its particular appliance calibration without any change. The use of this algorithm leads to higher performances in terms of time between two defrost procedures without impacting energy label of the appliance.
Further features and advantages of a method according to the invention will become clear from the following detailed description, provided as an example, with reference to the attached drawings.
The control algorithm according to the invention starts from the idea that the cooling capacity (CC) is a function of inverter motor frequency driving the compressor (freq), temperature of the evaporator (Tevap) and temperature of condenser (Tcond):
CC=f(freq,Tevap,Tcond)
The most important variable in the above relationship is the frequency. So, as first approximation, we can consider:
CC˜f(freq)
According to very general conditions (that we can assume being satisfied without loss of generality of the consequences), it is known that a function can be represented by a Taylor series:
CC=f(freq)=Σh=0∞Ah·freqh
Where h is the sum index (non negative integer) and the Ah are constants that can be analytically evaluated by
if the function CC=f(freq) is known.
It is also known that a function satisfying that assumption can be approximated by the first N terms of the series (where N determines the error of the approximation). In particular, we assume N=1
CC=f(freq)˜Σh=0NAh·freqh˜A0+A1·freq
A0 and A1 can be both analytically and experimentally evaluated . . . . That is:
CC˜A0+A1·freq
Then, the first and most important point is that this approach is able to reduce the number of the inputs to the algorithm.
Applying the concept to defrost operation, where the target is to estimate ice formation over the evaporator, the solution according to the invention is based on the general principle:
Where:
The average cooling capacity and the average frequency are evaluated, respectively, over the time span T. This relationship works for variable cooling capacity compressor and single speed compressor as well. It is clear that, by using the frequency as input, it works in case of variable cooling capacity compressor, where variable frequency is the main control parameter. Let's see how it works and how it could be modified in case of single speed compressor.
In case of single speed compressor, in fact, constant input frequency is equal to:
Where:
With reference to
The control approach according to the invention is an improvement also because it extends the approach based on ice ∝
Number | Date | Country | Kind |
---|---|---|---|
12197310 | Dec 2012 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4578959 | Alsenz | Apr 1986 | A |
4850200 | Sugiyama | Jul 1989 | A |
5261247 | Knezic | Nov 1993 | A |
5377498 | Cur | Jan 1995 | A |
5533350 | Gromala | Jul 1996 | A |
5628199 | Hoglund | May 1997 | A |
20050241324 | Cho | Nov 2005 | A1 |
20070209376 | Boer | Sep 2007 | A1 |
20100126191 | Han | May 2010 | A1 |
20130081416 | Kim | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
19743073 | Apr 1999 | DE |
0031945 | Jul 1981 | EP |
1591736 | Nov 2005 | EP |
1619456 | Jan 2006 | EP |
Entry |
---|
European Patent Application No. 12197310.1 filed Dec. 14, 2012, Applicant: Whirlpool Corporation; European Search Report mail date: Apr. 24, 2013. |
Number | Date | Country | |
---|---|---|---|
20140165629 A1 | Jun 2014 | US |