The invention relates to a method for regulating the operation of a burner for a rotary tubular furnace for the production of cement clinker, primary fuels, secondary fuels and primary-airstreams being blown out of the nozzle mouth of the burner, and state variables of the burner flame formed being measured, and the burner flame being varied as a function of these.
On a cement clinker production line, calcined raw cement meal is burnt in the sintering zone of a rotary tabular furnace to form cement clinker. To heat the rotary tubular furnace, a long burner lance is introduced into the furnace outflow end through the stationary furnace outflow housing, the fuels introduced into the lance burning at the issue of the latter so as to form a burner flame. The correct temperature, the length and the other configuration of the burner flame are important in the formation of clinker minerals in the rotary tubular furnace. Development tends towards giving the rotary tubular furnace itself as short a build as possible by virtue of the high-quality calcination of the raw cement meal outside the rotary tubular furnace, so that, in reaction to this, the burner flame is, as a rule, to be as short and as hot as possible. Increasingly often, instead of liquid and gaseous fuels, fuels used are solid fuels, in particular coal dust, but, recently, also pneumatically transportable fragmentary waste fuels, such as, for example, waste plastic granulates, etc., as what are known as secondary fuels.
Known rotary-furnace burners are often designed as what are known as three-duct burners (for example, DE-10 2004 010 063 A1), with at least three ducts concentric to one another, that is to say the pneumatically transported coal dust flows as fuel through the middle burner duct and emerges through an annular gap nozzle, the outflowing coal dust being surrounded by a radially inner and by a radially outer primary-airstream as combustion air. The radially outer air, also called jet air, is subdivided by means of a multiplicity of individual nozzles arranged in the annular jet-air duct into many individual high-velocity primary-air jets which generate a vacuum zone in their surroundings, that is to say the many high-velocity primary-air jets serve as propulsive jets of the injector principle, by virtue of which the large mass of the virtually stationary hot secondary air of, for example, about 1000° C., which surrounds the rotary-furnace burner, is sucked inwards in the direction of the core of the burner flame, where an intensive intermixing of the hot secondary air with the coal dust emerging through the annular gap nozzle takes place, which coal dust is to burn quickly and completely so as to form a short hot flame.
In the known rotary-furnace burner, the primary-air duct lying radially within the coal dust duct has at its issue a swirl generator which can be adjusted while the burner is in operation, the outflow angle of the swirl air and the flame form of the rotary-furnace burner being capable of being influenced by the adjustment of guide blades. An automated regulation concept is not known from this.
EP 1 518 839 A1 discloses a method for operating a cement clinker production plant, with sensors, for example cameras, for monitoring the characteristics of the flame of the rotary-furnace burner and using these measurement variables for automated regulation using a computer. In this case, only regulating actions on the mass or quantity flows of the raw cement meal with aggregates, supplied in each case, on the primary and secondary fuels and on the combustion air are known as manipulated variables.
In practice, for example when a larger burner flame has been required, the volume flows and the pressures of the primary air delivered to the rotary-furnace burner have been increased. This, however, results in undesirable effects, such as, for example, an increased wear of the refractory lining, increased rates of evaporation of disturbing pollutants and, above all, an increase in the specific heat energy consumption of the overall process. This is because, when a rotary-furnace burner is operating optimally, it is important to suck as much hot secondary air (for example, approximately 95% by volume) as possible into the core of the burner flame by means of as little cold primary air (for example, approximately 5% by volume) as possible for the purpose of rapid and complete fuel combustion. The fraction of cold primary air should, if possible, not be increased even when an increased fraction of fragmentary cost-effective alternative fuels or secondary fuels, such as, for example, waste plastic granulates, etc., is to be burnt in the rotary-furnace burner.
The object on which the invention is based is, for operating the lance burner of a rotary tubular furnace for production of cement clinker from calcined raw cement meal, to provide an automated regulation method which is optimized in terms of the configuration of the burner flame for all fuels used, without regulating actions on the quantity or mass flows of the fuels supplied and/or on the combustion air and/or on the raw cement meal necessarily having to be carried out.
Whereas, in the known systems for regulating a rotary-furnace burner with monitoring of the burner flame, when regulation has been required the volume or mass flows of the primary air and/or of the fuels supplied to the burner have in any event been varied, which is undesirable since these fuel and combustion-airstreams have been set once in an optimal ratio to one another and coordinated with the overall cement clinker combustion process, in the regulation method according to the invention these volume or mass flows are initially not sensed, but, instead, regulating actions on manipulated variables of the burner itself, are carried out as a function of the measured characteristics of the burner flame. This presupposes that, in the regulation method according to the invention, the rotary-furnace burner affords the possibility of being able to vary a plurality of manipulated variables individually or simultaneously during operation, to be precise the spatial outflow angle and the swirl momentum of a swirled primary-airstream and/or the angle of divergence of the primary-air/jet-air jets emerging from individual nozzles distributed around the burner circumference and/or the velocity of emergence and/or the swirl component of a stream of fragmentary secondary fuels which is blown through the burner.
The measurement variables from the flame monitoring are delivered to an intelligent controller which, by means of logics, carries out the abovementioned regulating actions on the rotary-furnace burner, in such a way that, depending on the fuel, the burner flame assumes and maintains the desired configuration, while, especially, the particulate and fragmentary constituents of the solid fuels are also mixed completely into the flame cone and burnt out in the flame itself. Owing to the automated regulation of the burner towards an optimized burner flame tailored to the fuels used in each case and to the respective cement clinker combustion process, there is no need for any manual setting of the burner while the burner is in operation.
In the method according to the invention for regulating the operation of a rotary-furnace burner, in addition to the measurement variables of the properties of the burner flame, including its temperature, further measurement variables may be introduced as additional measurement variables into the control loop, such as, for example, the analysis of the rotary-furnace exhaust gas, in particular the CO and/or NOx content, and/or the temperature of the casing of the rotary tubular furnace and/or the temperature of the recuperation air from the clinker cooler, which flows as secondary air into the rotary furnace, and/or the current consumption of the rotary-furnace drive motor and/or characteristic numbers relating to the burn-out behaviour of the secondary fuels.
Insofar as the different regulating actions on the rotary-furnace burner have come up against their limits, there is the possibility, in addition to these regulating actions, of also carrying out a regulating action on the volume flows of the primary air and/or on the primary-air pressures and/or on the mass flows of the primary and secondary fuels used.
The invention and its further features and advantages are explained in more detail by means of the exemplary embodiment illustrated diagrammatically in the figures in which:
First, with reference to
In the annular space between the outer burner carrier tube 16 and the coal dust tube 17 arranged concentrically to it, cooling air is blown through the burner and flows out of the burner mouth in the region between the adjacent jet-air nozzles 15, where the cooling air heated at the burner lance can then also form a fraction of the primary air. The annular cooling-air duct is designated by the reference numeral 18. The burner carrier tube 16 is in any event protected in the front burner-lance region by an attached refractory compound, not illustrated in
According to the exemplary embodiment of
By means of an axial displacement of the secondary-fuel tubes 19, 20 which is indicated in
The mixing of the blown-out fragmentary secondary fuels into the burner flame and the configuration of the latter can also be influenced in that a specific adjustable swirl generator 23 is arranged at the issue of the secondary-fuel tubes 19, 20 into the expansion chamber 21 in order to swirl the secondary fuels even in the expansion chamber 21. According to the exemplary embodiment of
Furthermore,
The regulation method according to the invention is not restricted to the use of a burner according to exemplary embodiments shown in
As is apparent from the foregoing specification, the invention is susceptible of being embodied with various alterations and modifications which may differ particularly from those that have been described in the preceding specification and description. It should be understood that we wish to embody within the scope of the patent warranted hereon all such modifications as reasonably and properly come within the scope of our contribution to the art.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 060 869.0 | Dec 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/011248 | 12/20/2007 | WO | 00 | 6/19/2009 |