The present invention relates to a method for converting a two-channel audio system into a multichannel audio system and to an audio processor thereof, and more particularly to a method of processing the phase of the original audio signal to achieve the object.
Multichannel Dolby system and the like are very popular in current audio systems. Those systems emphasize that the original multichannel audios are first encoded into two-channel audios for transmitting, and then returned to the original multichannel audios by a specially designed decoder for playing.
However, if a system has audios of only two channels, using the aforementioned multichannel systems for processing will cause misleading operation and distortion.
Therefore, if a system is to convert a two-channel audio system into a multichannel audio system, a special design is required.
It is therefore an object of the present invention to provide a method to convert a two-channel audio system into multichannel audio system and an audio processor thereof. The original two-channel audios are not coded and decoded, but just the phase of the original audio signals is processed to achieve the object.
Referring to
The conventional two-channel audios Lin (left channel audio) and Rin (right channel audio) are inputted into each of the 9 audio equipments, and are processed by a specially designed audio processor 2 (see
The special outputs of the 9 audio equipments are as below:
Lin represents left channel audio, while Rin represents right channel audio, and LPF is a low-pass filter. The audio effects in the spaces between each two of the 9 audio equipments are 2Lin+Rin, 3Lin−(½)Rin, 4Lin−(1+½)Rin, 3Lin, 3Rin, 4Rin−(1+½)Lin, 3Rin−(½)Lin, 2Rin+Lin and 2Lin+2Rin respectively as shown.
Referring to
When the control signal CTRL is low, SW1 will open and SW2 will close, the right channel audio Rin can't be inputted into OP1, so OP1 is only influenced by the left channel audio Lin. According to the principle of the operational amplifier, the voltage level of Lout at B must be the voltage level at A×(R3+R4)/R3, while the voltage level at A is Lin×R2/(R1+R2) according to the circuit diagram, thus Lout=Lin×R2/(R1+R2)×(R3+R4)/R3=Lin ∘
When the control signal CTRL is high, SW1 will close and SW2 will open, the right channel audio Rin will be inputted into the “−” terminal of OP1 through resistor R3. According to the principle of the operational amplifier, the right channel audio Rin will generate an output of Rin×(−)R4/R3=−½Rin at B, while the left channel audio Lin will generate an output of Lin at B (as described above), thus the composition voltage of Lout at B is Lin−½Rin ∘
In the circuit of the audio processor stated above, since it is designed by letting R1=R4 and R2=R3, the left channel audio Lin can be reproduced at Lout. If we need to demonstrate the influence of the right channel audio Rin, it is only necessary to change the voltage level of the control signal CTRL, and the user can clearly distinguish the effect of adding the right channel audio Rin ∘
In the circuit of the audio processor stated above, Lout=Lin, but if we change the ratio between R1 and R2, the coefficient before Lin in Lout can be changed; and if we change the ratio between R3 and R4, the coefficient before Rin in Lout can be changed.
Similarly, when the control signal CTRL is low, SW3 will open and SW4 will close, the left channel audio Lin can't be inputted into OP2, so OP2 is only influenced by the right channel audio Rin. According to the principle of the operational amplifier, the voltage level of Rout at D must be the voltage level at C×(R7+R8)/R7, while the voltage level at C is Rin×R6/(R5+R6) according to the circuit diagram, thus Rout=Rin×R6/(R5+R6)×(R7+R8)/R7=Rin.
When the control signal CTRL is high, SW3 will close and SW4 will open, the left channel audio Lin will be inputted into the “−” terminal of OP2 through resistor R7. According to the principle of the operational amplifier, the left channel audio Lin will generate an output of Lin×(−)R8/R7=−½Lin at D, while the right channel audio Rin will generate an output of Rin at D (as described above), thus the composition voltage of Rout at D is Rin−½Lin.
In the circuit of the audio processor stated above, since it is designed by letting R5=R8 and R6=R7, the right channel audio Rin can be reproduced at Rout. If we need to demonstrate the influence of the left channel audio Lin, it is only necessary to change the voltage level of the control signal CTRL, and the user can clearly distinguish the effect of adding the left channel audio Lin.
In the circuit of the audio processor stated above, Rout=Rin, but if we change the ratio between R5 and R6, the coefficient before Rin in Rout can be changed, and if we change the ratio between R7 and R8, the coefficient before Lin in Rout can be changed.
Referring to
The operational amplifiers, the voltage dividers, the switches, the resistors and the inverter in the audio processor of the present invention can be implemented by the digital simulation techniques of computer software.
The spirit and scope of the present invention depends only upon the following Claims, and is not limited by the above embodiment.
Number | Name | Date | Kind |
---|---|---|---|
4097688 | Ochi | Jun 1978 | A |
4479235 | Griffis | Oct 1984 | A |
5400411 | Lee | Mar 1995 | A |
5497425 | Rapoport | Mar 1996 | A |
5504819 | Fosgate | Apr 1996 | A |
Number | Date | Country | |
---|---|---|---|
20030223589 A1 | Dec 2003 | US |