This application claims the benefit of priority from Chinese Patent Application No. 202011352856.7, filed on Nov. 27, 2020. The content of the aforementioned application, including any intervening amendments thereto, is incorporated herein by reference in its entirety.
This application relates to a method for coordinate error correction, in particular to a method for spatial geometric coordinate error correction of a three-dimensional (3D) lidar scanner, and belongs to the technical field of lidar measurement.
A three-dimensional (3D) lidar scanner is a large-sized instrument that measures spatial coordinate for the non-contact scanning measurement on a surface of a large object. The Lidar-derived 3D point cloud data can be used for 3D reverse modeling or dimensional tolerance evaluation.
The 3D lidar scanner includes an azimuth angle measurement module, a pitch angle measurement module, a laser range measurement module, and a measurement light reflector module. These modules require specific geometric and positional relationships, which is however hard to achieve in the processes of manufacturing, installation, handling and use of components of the lidar scanner. This, in turn, will affect the accuracy of coordinate measurement by the 3D lidar scanner, so it is necessary to compensate and correct the spatial geometric errors of the components. It is very important to study the error model of the 3D lidar scanner and realize coordinate correction to improve the measurement accuracy of this type of the measuring instrument.
The existing methods for error correction of the 3D lidar scanner lack the error correction for the geometric structure coordinates of the 3D lidar scanner.
In view of this, the present disclosure proposes a method for coordinate error correction of a three-dimensional (3D) lidar scanner, by building an error model to determine the error source that affects its 3D coordinate measurement accuracy, and then correcting the error to improve the measurement accuracy of the 3D lidar scanner.
The method for coordinate error correction with a three-dimensional (3D) lidar scanner includes:
In a preferred embodiment, in step S1:
In a preferred embodiment, in step S2:
In a preferred embodiment, the error factors further include an azimuth angle measurement error and a pitch angle measurement error. The error factors include 26 items.
In a preferred embodiment, in step S3:
In a preferred embodiment, the high-precision coordinate measuring instrument in step S4 is a laser tracker.
(1) The error model of the 3D lidar scanner is built to determine the error source that affects the measurement accuracy of the 3D coordinate, thereby providing a basis for error correction.
(2) After the error source is determined, the spatial geometric errors of the components of the 3D lidar scanner are compensated and corrected, which can effectively improve the measurement accuracy of the 3D lidar scanner.
In the following, the present disclosure will be further described in detail with reference to the accompanying drawings and embodiments.
This embodiment provides a method for correction for errors of three-dimensional coordinate measurement with a large-sized three-dimensional (3D) lidar scanner. In the method according to this embodiment, an error model of a 3D lidar scanner is built and then solved through a calibration point group and a third-party device, and an analytical expression for coordinate correction is generated to realize the coordinate correction.
A method for coordinate error correction is performed according to the steps as illustrated in
S1: Building of a Theoretical Calculation Model
A 3D lidar scanner includes a laser ranging module, an azimuth angle measurement module, a pitch angle measurement module, and a reflector module. As shown in
The theoretical calculation model is the conversion of a Cartesian coordinate system to a spherical coordinate. Supposing the 3D coordinate of the measured point E is (x, y, z), the distance of from the measured point E to the origin O of the coordinate system of the 3D lidar scanner is L, the corresponding azimuth angle is α, and the corresponding pitch angle is β, the theoretical calculation model is:
The 3D lidar scanner consists of four modules: the laser ranging module, the azimuth angle measurement module, the pitch angle measurement module, and the reflector module. These modules will inevitably cause installation errors during installation. Particularly, a deviation δx in the x-axis direction, a deviation δy in the y-axis direction, and a deviation δz in the z-axis direction, a deflection angle δα relative to the x axis, a deflection angle δβ relative to the y axis, and a deflection angle δγ relative to the z axis between an actual installation position and a theoretical position.
In addition, an azimuth angle measurement error is δθ1, and a pitch angle measurement error is δθ2. A laser ranging measurement error has been compensated in the laser ranging module, so the measurement error for the laser ranging module is not considered in the model. In summary, building an error model needs to take into account 26 error factors.
Considering the error factor, the calculation model is expressed as P′(x, y, z)=f′(α, β, L),
A relationship between each of the errors obtained in step S2 and the three-dimensional coordinate of the measured point is analyzed to generate a calculation expression of a three-dimensional Cartesian coordinate including the error amount, the azimuth angle, the pitch angle, and the distance.
As shown in
A calibration point group is set that includes multiple calibration points in a full range of the measurement distance, the azimuth angle, and the pitch angle of the 3D lidar scanner. The 3D lidar scanner is used to obtain the distance and the azimuth angle and the pitch angle of each of the calibration points. The coordinate measuring instrument such as a laser tracker is used to measure each calibration point in the calibration point group to obtain the 3D coordinates (x, y, z) of each of the calibration points. The measurement data of the 3D lidar scanner and the measurement data of the laser tracker are used to solve the various error values in the model. Particularly,
S42: The 3D lidar scanner is used to obtain the azimuth angle, the pitch angle and the distance of each of the calibration points.
S43: The Leica laser tracker is used as a high-precision measuring instrument to obtain the 3D Cartesian coordinate (x, y, z) of each of the calibration points. The laser tracker in this step can also be replaced by other measuring instruments of the same level.
S44: The 3D coordinates (x, y, z) of each of the calibration points obtained by the high-precision measuring instrument and each of the calibration points (α, β, L) measured by the 3D lidar scanner are plugged into the error model built in step S3. A set of simultaneous equations with 26 unknown errors can be obtained, and the corresponding error can be obtained by solving the equations, and the analytical expression f′(δχ) for coordinate correction can be obtained, and then the coordinate correction calculation formula, as illustrated below, can be obtained:
P′(x,y,z)=f′(δχ)(α,β,L).
S5: Coordinate Correction
The distance, the azimuth angle, and the pitch angle of the measured point is substituted into the corrected three-dimensional coordinate calculation formula obtained in step S4 to realize the correction of the three-dimensional coordinate of the three-dimensional lidar scanner.
Although the present invention has been described in detail with general descriptions and specific examples above, it is obvious to those skilled in the art that some modifications or improvements can be made on the basis of the present disclosure. Therefore, these modifications or improvements made without departing from the spirit of the present invention fall within the scope as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
202011352856.7 | Nov 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20200116836 | Pacala | Apr 2020 | A1 |
20200264313 | Newman | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
106597417 | Apr 2017 | CN |
107290734 | Oct 2017 | CN |
Number | Date | Country | |
---|---|---|---|
20220018960 A1 | Jan 2022 | US |