The present application claims benefit of Chinese patent application CN 201410284746.X, entitled “A Method for Correcting Gray-scale of Display Panel” and filed on Jun. 23, 2014, which is incorporated herein by reference.
The present disclosure relates to the technique of driving liquid crystal display panels, particularly to a gray-scale correction method which can improve the phenomenon of “becoming white near the left and right sides” in liquid crystal display panels.
Currently, the liquid crystal display panel develops rapidly toward large size and high resolution. As shown in
Therefore, how to improve the phenomenon of “becoming white near the left and right sides” is an important subject to raise the picture quality of the liquid crystal display panel.
In the light of the above problems, the present disclosure provides a method for correcting gray-scale of a display panel.
The method for correcting gray-scale of a display panel comprises the steps of:
S100, selecting a plurality of measurement points of the display panel and specifying a reference point;
S200, specifying a plurality of measurement gray-scales, and, under each measurement gray-scale, measuring actual gray-scale of each measurement point when the brightness thereof reaches a reference brightness, wherein the reference brightness is the brightness of the reference point;
S300, determining a gray-scale correction coefficient of each measurement point under each measurement gray-scale according to the corresponding relationship between the actual gray-scale and the measurement gray-scale, and establishing an original gray-scale correction coefficient table;
S400, extending the original gray-scale correction coefficient table to a gray-scale correction coefficient table of pixel points of the display panel under all gray-scales through linear interpolation algorithm; and
S500, when a data voltage is to be applied to a pixel point under a gray-scale, searching the gray-scale correction coefficient corresponding to said gray-scale and said pixel point from the extended gray-scale correction coefficient table, correcting the value of said gray-scale accordingly, and driving the display panel according to the corrected gray-scale.
Further, the gray-scale correction coefficients of pixel points in the same column of the display panel are the same.
In one embodiment of the present disclosure, said step S100 further comprises adjusting the gray-scale brightness curve of the reference point to meet the standard of γ 2.2.
In one embodiment of the present disclosure, said step S100 comprises:
dividing the display panel into 2n−1 squares with equal area along its horizontal central axis, wherein n≧2, and
selecting the central point of each square as the measurement point, and specifying the central point of square n as the reference point.
In one embodiment of the present disclosure, the gray-scale correction coefficient in S300 is the ratio of the actual gray-scale to the corresponding measurement gray-scale.
In one embodiment of the present disclosure, in step S400 the original gray-scale correction coefficient table is extended through linear interpolation algorithm, and in the extended gray-scale correction coefficient table:
the gray-scale correction coefficients of pixel points between any two adjacent measurement points change linearly; and
the gray-scale correction coefficients of gray-scales between any two adjacent measurement gray-scales change linearly.
In one embodiment of the present disclosure, in step S400 the original gray-scale correction coefficient table is extended through linear interpolation algorithm, and in the extended gray-scale correction coefficient table:
the gray-scale correction coefficient of the pixel point on the left side of the leftmost measurement point of the display panel equals to the gray-scale correction coefficient of the leftmost measurement point of the display panel; and
the gray-scale correction coefficient of the pixel point on the right side of the rightmost measurement point of the display panel equals to the gray-scale correction coefficient of the rightmost measurement point of the display panel.
In one embodiment of the present disclosure, in step S400 the original gray-scale correction coefficient table is extended through linear interpolation algorithm, and in the extended gray-scale correction coefficient table:
the gray-scale correction coefficient of gray-scale smaller than the minimum measurement gray-scale equals to the gray-scale correction coefficient of the minimum measurement gray-scale; and
the gray-scale correction coefficient of gray-scale larger than the maximum measurement gray-scale equals to the gray-scale correction coefficient of the maximum measurement gray-scale.
In one embodiment of the present disclosure, the gray-scale correction coefficients inserted in the extended gray-scale correction coefficient table in step S400 are determined by the following equations:
wherein Lq and Lq+1 represent two adjacent measurement gray-scales;
represent two adjacent measurement pixel points;
Cx(y) represents the gray-scale correction coefficient of pixel point x under gray-scale y; and
N represents the column of display panel, and 2n−1 represents the number of measurement points, p being integer.
In one embodiment of the present disclosure, in step S500 the corrected gray-scale is the product of the original gray-scale and the gray-scale correction coefficient.
In the display panel gray-scale correction method according to the present disclosure, a gray-scale correction coefficient table of a small amount of measurement points can be established based on the test results of the gray-scales and brightness of a small amount of measurement points of the display panel, and then the gray-scale correction coefficient table of a small amount of measurement points can be extended to the gray-scale correction coefficient table of all pixel points through linear interpolation algorithm. In this manner, a gray-scale correction for each pixel point of the display panel with a high correction precision can be achieved, and the phenomenon of “becoming white near the left and right sides” that would occur in the prior art can be improved.
Other features and advantages of the present disclosure will be stated in the following description, and part of them will become obvious in the description or become understood through the embodiments of the present disclosure. The objectives and other advantages of the present disclosure can be achieved and obtained through the structures specified in the description, claims and drawings.
The accompanying drawings provide further understandings of the present disclosure and constitute one part of the description. The drawings are used to interpret the present disclosure together with the embodiments, not to limit the present disclosure. In the drawings:
The technical solution and operating principle provided by the present disclosure will be explained in detail below with reference to the drawings.
S100, selecting a plurality of measurement points of the display panel and specifying a reference point;
S200, specifying a plurality of measurement gray-scales, and, under each measurement gray-scale, measuring actual gray-scale of each measurement point when the brightness thereof reaches a reference brightness, wherein the reference brightness is the brightness of the reference point;
S300, determining a gray-scale correction coefficient of each measurement point under each measurement gray-scale according to the corresponding relationship between the actual gray-scale and the measurement gray-scale, and establishing an original gray-scale correction coefficient table;
S400, extending the original gray-scale correction coefficient table to a gray-scale correction coefficient table of pixel points of the display panel under all gray-scales through linear interpolation algorithm; and
S500, when a data voltage is to be applied to a pixel point under a gray-scale, searching the gray-scale correction coefficient corresponding to said gray-scale and said pixel point from the extended gray-scale correction coefficient table, correcting the value of said gray-scale accordingly, and driving the display panel according to the corrected gray-scale.
The above steps can be further subdivided in specific embodiments.
As shown in
In step S200, m gray-scales of the display panel are selected, and specified as measurement gray-scales, referred to as Lq, wherein q=1, . . . , m. The following steps S201˜S202 are performed under each measurement gray-scale.
In step S201, the brightness of the reference point under the measurement gray-scale Lq is detected, referred to as In(Lq).
In step S202, In(Lq) is deemed as reference brightness, and the actual gray-scale of each measurement point when the brightness thereof reaches In(Lq) is detected.
From the background of the disclosure hereinabove it can be known that, the brightness of the measurement points under the same measurement gray-scale are different owing to the distortion of the scanning signals. Conversely, while the brightness of the measurement points are the same, their corresponding actual gray-scales are different. The present disclosure aims to gray-scale correction for enabling the display panel having identical and uniform display brightness as much as possible. From this point of view, for measurement point x, if its brightness Ix(y′) equals to In(Lq) after its gray-scale is adjusted to y′, that means the gray-scale of the measurement point should be corrected to y′. In this case, the gray-scale correction coefficient of measurement point x under gray-scale Lq should be Cx(Lq)=y′/Lq. That is to say, the gray-scale correction coefficient is the ratio of the actual gray-scale to the corresponding measurement gray-scale.
In step S300, the gray-scale correction coefficients of all measurement points under each measurement gray-scale are determined and collected, and the original gray-scale correction coefficient table is established. For the case of 2n−1 measurement points and m measurement gray-scales, there should be (2n−1)×m gray-scale correction coefficients in the original gray-scale correction coefficient table (as shown in
If a display panel has a resolution of M rows×N columns, the 2n−1 measurement points correspond to the
pixel points arranged horizontally in the display panel respectively.
Strictly speaking, the measurement result of one measurement point represents the average value of all measurement results of the square region with the pixel point corresponding to said measurement point as its center. As it is impossible to measure one single pixel point in actual operation, the present disclosure proposes using the measurement result of a measurement point as the measurement result of the pixel point corresponding to said measurement point, which, however, will influence on the accuracy of the correction result inevitably. In view of this, measurement points and measurement gray-scales should be selected as more as possible in actual operation, so that as more as possible measurement results can be included in the original gray-scale correction coefficient table. In this case, correction accuracy as high as possible can be achieved.
The table as shown in
In step S400, the original gray-scale correction coefficient table (as shown in
i) the gray-scale correction coefficients of pixel points inserted between any two adjacent measurement points change linearly; and
ii) the gray-scale correction coefficients of gray-scales inserted between any two adjacent measurement gray-scales change linearly.
In addition, the extended gray-scale correction coefficient table may preferably meet the following conditions:
iii) the gray-scale correction coefficient of the pixel point on the left side of the leftmost measurement point of the display panel equals to the gray-scale correction coefficient of the leftmost measurement point of the display panel; and
iv) the gray-scale correction coefficient of the pixel point on the right side of the rightmost measurement point of the display panel equals to the gray-scale correction coefficient of the rightmost measurement point of the display panel.
It is necessary to explain that the phenomenon of “becoming white near the left and right sides” means that the pixel points of the display panel present different brightness in the horizontal direction of the display panel under the same gray-scale. Therefore, when a gray-scale correction is carried out for reducing the phenomenon of “becoming white near the left and right sides”, the gray-scale correction coefficients of the pixel points in the same column of the display panel may be the same.
Based on the above principle, the original gray-scale correction coefficient table as shown in
wherein Lq and Lq+1 represent two adjacent measurement gray-scales;
represent two adjacent measurement pixel points; and
Cx(y) represents the gray-scale correction coefficient of pixel point x under gray-scale y.
In step S500, the extended gray-scale correction coefficient table can be preset in control unit of liquid crystal display panel. When the data driving unit of the liquid crystal display panel writes in data signal to a pixel unit under a gray-scale, the control unit of the liquid crystal display panel will search the gray-scale correction coefficient corresponding to said gray-scale and said pixel point from the extended gray-scale correction coefficient table. If the gray-scale correction coefficient corresponding to gray-scale y and pixel point x is Cx(y) in the extended gray-scale correction coefficient table, the gray-scale y should be modified into y′=Cx(y)×y. Then the data driving unit is driven according to gray-scale y′ to input data signals to pixel point x.
The aforesaid gray-scale correction method of the display panel will be explained further in the following with reference to a specific embodiment. A display panel with a resolution of 1080 rows×1920 columns is taken as an example, wherein N=1920.
The display panel is divided into 3 squares with equal area along its horizontal central axis, i.e., n=2. The central point of each square is selected as the measurement point, and the central point of square 2 (i.e., the central point of the whole display panel) is specified as the reference point.
Three gray-scales 48, 96, and 160 are selected as measurement gray-scales, i.e., m=3. Under each measurement gray-scale, the brightness of the reference point is measured, and then actual gray-scale of each measurement point when the brightness thereof reaches a reference brightness is measure, wherein the reference brightness is the brightness of the reference point. Taking gray-scale 48 for example, if the brightness of the reference point is I2(48)=30.0 nit under gray-scale 48, and the brightness of the first measurement point is I1(41)=30.0 nit only under gray-scale 41, the gray-scale of the first measurement point should be corrected from 48 to 41. In this case, the gray-scale correction coefficient of the first measurement point under gray-scale 48 is
The gray-scale correction coefficients of other measurement points under each measurement gray-scale can be obtained in the same way, so that original gray-scale correction coefficient table can be established accordingly (as shown in
The gray-scale correction coefficients of inserted pixel points and inserted gray-scales can be determined by the equations hereinabove. Taking pixel points in column 1015 and gray-scale 137 for example, wherein pixel points in column 1015 are located between pixel points in column 960 and pixel points in column 1440, and gray-scale 137 is located between gray-scale 96 and gray-scale 160.
The gray-scale correction coefficient of 1920 pixel points in the horizontal direction of the display panel under a total of 256 gray-scales can be obtained accordingly.
Then, the extended gray-scale correction coefficient table as shown in
The present disclosure discloses the embodiments hereinabove, but the embodiments are adopted to facilitate the understanding of the present disclosure, rather than to limit it. Any one skilled in the art may make any modifications and changes to the forms and details of the embodiments without departing from the spirit and scope of the present disclosure. The extent of protection of the present disclosure shall be determined by the scope as defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
2014 1 0284746 | Jun 2014 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2014/081638 | 6/4/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/196509 | 12/30/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20070247407 | Lee et al. | Oct 2007 | A1 |
20110222767 | Mitsunaga | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
1242557 | Jan 2000 | CN |
1627357 | Jun 2005 | CN |
1755758 | Apr 2006 | CN |
101089683 | Dec 2007 | CN |
101123074 | Feb 2008 | CN |
101325024 | Dec 2008 | CN |
101425266 | May 2009 | CN |
101859526 | Oct 2010 | CN |
102196175 | Sep 2011 | CN |
103314405 | Sep 2013 | CN |
2006243223 | Sep 2006 | JP |
2006276119 | Oct 2006 | JP |
2007199470 | Aug 2007 | JP |
Entry |
---|
Ke et al., Machine Translation fo Foreign Patent Document CN 101123074 A, Generation method for gamma mapping table, Feb. 13, 2008, pp. 1-5. |
Chinese Office Action with search report dated Nov. 16, 2015, issued Chinese Patent Office in corresponding application 201410284746.X. |
International Search Report dated Mar. 24, 2015. |
Number | Date | Country | |
---|---|---|---|
20160260368 A1 | Sep 2016 | US |