The present invention relates to a method for correcting messages that contain stuffing bits (binary elements).
A conventional transmission chain is illustrated in
The CRC block is a binary sequence of defined length, which is obtained by a hash of the original message. A CRC block of length n calculated on an original message of any given length permits the detection of all error bursts with a length that does not exceed n and a fraction of 1-2−n of the error bursts having a greater length. The CRC block is calculated by polynomial modulo 2 division. For this purpose, a polynomial of the message, hereinafter denoted M(x), is associated with the original message. The CRC block corresponds to the remainder R(x) of the polynomial modulo 2 division of M(x)·xn+1 by the generator polynomial of degree n+1, denoted G(x). The quotient of the division can be ignored. The degree of the remainder R(x) cannot be greater than the degree of G(x) minus one, i.e. n. Where necessary, O-valued bits are added to the remainder R(x) to create a CRC block of fixed length. In order to calculate the CRC block, one can use in particular a linear feedback shift register. The data packet formed by the original message, onto which has been attached the CRC block, is sometimes referred to as “code word”.
In the following step 14 the stuffing bits or stuffed bits that represent neither information nor redundancy are inserted in the transformed message. These stuffing bits are typically used to limit the number of consecutive bits of the same value and to introduce supplementary transitions. The supplementary transitions serve in particular to reduce the synchronization problems at the level of the receiver or to avoid the occurrence of binary sequences with a specific meaning (such as control sequences, for example). The HDLC protocol (acronym for High-level Data Link Control) uses stuffing bits to avoid the appearance of the flag for the time frame end (which in the case of HDLC corresponds to the binary sequence 01111110). According to the HDLC protocol, a 0 bit is inserted behind a sequence of five consecutive bits of value 1, thereby ensuring that the flag for the time frame end does not appear in the middle of a message. This is illustrated in
The transformed, stuffed message is then used to modulate (in the modulation step 16) a signal for the purposes of the transmission by the transmission channel 18. The modulation step 16 is possibly preceded by a channel coding (not shown in
At the receiver side, the transmitted signal is demodulated (in the demodulation step 20) and decoded as needed. In order to recover the original message (the information bits), the stuffing bits are eliminated (step 22). In order to detect and/or correct the transmission errors, the receiver verifies the CRC of the message transmitted in step 24 before releasing the verified/corrected message (step 26) or an error message in the case where the correction would not be possible. Different methods are known for verifying the CRC. One of these methods consists in calculating the CRC on the received sequence of information bits and comparing it with the CRC of the transmitted message. A method that can be more easily implemented in hardware uses the property that the CRC of a binary sequence consisting of a message followed by its CRC is zero, and can be expressed as follows:
CRC([data,CRC(data)])=0
where CRC(.) designates the result of the calculation of CRC and [.,.] the concatenation of two binary sequences. Hence, with this method the CRC of the transmitted message is calculated (i.e. on the set of the information bits and the redundancy bits). If the result is 0 then the message is considered to have been correctly transmitted. Other methods exist that enable the position of an error bit to be detected. A method of this type is described, particularly in the article by B. McDaniel, An algorithm for error correcting cyclic redundance checks, C/C++ Users Journal, p. 6, 2003. Developments of this method enable several error bits to be corrected (cf. e.g. S. Babaie, A. K. Zadeh, S. H. Es-hagi, N. J. Nvimipour, Double bits error correction using CRC method, International Conference on Semantics, Knowledge and Grid, no 5, pp. 254-257, 2009 and C. Shi-yi and L. Yu-bai, Error correcting cycle redundancy checks based on confidence declaration, ITS Telecommunications Proceedings, no 6, pp. 511-514, 2006). However, all these methods assume that the stuffing bits were removed from the received message before they could be applied, which in practical terms greatly reduces their interest.
The disclosure proposes a message correction method that is applicable in the presence of stuffing bits.
The method according to the invention is applied to a message (message to be corrected), the generation of which involved a transformation of an original message and the insertion of stuffing bits into the transformed message.
The transformation can particularly comprise the calculation of a CRC block and the incorporation of this block into the original message.
The method comprises the provision (e.g. at the output of a demodulator) of an observation sequence containing the message to be corrected. A plurality of path hypotheses is then constructed across a trellis that is associated with the transformation in the sense that it comprises nodes and branches, where the nodes each represent a state of a finite-state machine capable of transforming the original message and where the branches represent the possible transitions between the nodes. A transition between a first node that represents a first state of the finite-state machine and a second node that represents a second state of the state machine is possible if, when applying a 0 value bit or a 1 value bit to the input of the finite-state machine in its first state, it passes into the second state. Among the branches of the trellis diagram, certain represent conditional transitions that may be made only when bit stuffing is present. During the generation of a path hypothesis, bit stuffing is detected and the branches taken are those associated with the detected bit stuffing. Among the different path hypotheses that were constructed, the one that is chosen is that which appears to be the most probable with respect to the observation sequence.
It should be noted that the generation of the message to be corrected does not normally constitute part of the method according to the invention (although it is not excluded). However, the method applies only to messages that have been generated in a certain manner. The form of the messages to be corrected, the transformation and the conditions that specify the insertion of stuffing bits are normally defined in a protocol. A message may be corrected only if it has been generated in accordance with this protocol.
The construction of the plurality of path hypotheses across the trellis and the selection are preferably based on the Viterbi algorithm or the SOVA algorithm (acronym for Soft Output Viterbi Algorithm). Possible transmission errors (up to a certain number of errors) are corrected by the selection of the most probable path hypothesis, i.e. the path hypothesis with the minimum distance (among all the constructed hypotheses) from the observation sequence.
In the case where the transformation of the original message comprises the calculation of a cyclic redundancy check block that is combined with the original message to produce the transformed message, then the nodes of the trellis each represent a calculator state (e.g. of a linear feedback shift register) likely to have calculated the cyclic redundancy check block.
Preferably, when the method is executed and a path hypothesis is being constructed, a stuffing bit is considered detected if the conditions according to which the insertion of a stuffing bit is performed are met. If, for example, a stuffing bit had been inserted immediately after each sequence of five consecutive bits having the value 1 before the transmission of the message, then in each path hypothesis a bit that immediately follows a sequence of five consecutive bits having the value 1 is considered to represent a stuffing bit.
A state variable is preferably associated with each path hypothesis and as the path hypothesis is being constructed, is updated as a function of the already constructed part of the path hypothesis. The state variable is then monitored so as to determine whether the conditions in which a stuffing bit is inserted are met. For example, this state variable can indicate the number of consecutive bits of the same value for each path hypothesis. In the example where a stuffing bit is inserted behind a bit on condition that this bit is preceded by a sequence of five bits having the value 1, then as a path hypothesis progresses across the trellis a variable is monitored that indicates the number of bits of value 1 which have immediately preceded the existing bit. As soon as this variable reaches the value 5, then the next bit has to be a stuffing bit and the corresponding conditional transition is chosen.
A preferred embodiment of the method of the invention is applied to messages whose generation comprises, as the transformation of the original message, the calculation of a cyclic redundancy check block that is added to the original message and a coding (e.g. a channel coding) of the transformed message after the stuffing bits have been inserted. In this preferred embodiment, the selection of the path across the trellis is part of the decoding. The nodes of the trellis then represent the elements of a Cartesian product of at least the set of states of an encoder likely to have performed said encoding and the set of states of a calculator likely to have calculated the cyclic redundancy check block. In this trellis, a transition from a first node, corresponding to a first encoder state and a first calculator state, to a second node, corresponding to a second encoder state and a second calculator state, is possible,
in the presence of a bit of transformed message, if
or, in the presence of a stuffing bit, if
It can be appreciated that the method according to the invention may be used for correcting AIS messages. The observation sequence is then obtained from an AIS signal, for example received by a satellite, in particular a low earth orbit satellite. The AIS signal is possibly received at the same time as other AIS signals (i.e. received simultaneously or with a time overlap). In this case the method according to the invention is advantageously combined with “decollision” and demodulation methods for the AIS signals, for example the SIC method (Successive Interference Cancellation) or the deterministic or adaptive beam formation. A method for generating a plurality of candidate AIS messages from colliding AIS signals is described in the document US 2008/0304597. These candidates could be used as observation sequences in the method according to the invention. Note that this method can be used at the level of a receiver on board a satellite or on the ground.
An aspect of the invention relates to a computer programmer containing instructions causing the implementation of the above-described method when the computer programmer is executed by a computer. The computer programmer can make up a part of a computer programmer product that comprises a data storage medium (e.g. a hard disc, a flash memory, a USB key, a CD, a DVD, RAM, etc.) on which the programmer is stored.
Another aspect of the invention relates to decoder configured e.g. with an appropriate computer programmer in order to implement the method of the invention.
Other characteristics and features of the invention will become apparent from the detailed description of some advantageous exemplary embodiments given below, for illustration, with reference to the accompanying drawings. They show:
Hereinafter, we will assume that the stuffing bits are inserted as defined in the HDLC protocol, i.e. that one stuffing bit of value 0 is inserted immediately after each sequence of five consecutive bits of value 1. Note that this choice has been made solely to be able to illustrate the invention in the context of a practical example. The person skilled in the art will have no difficulty in adapting the method of the invention to other scenarios that involve the insertion of stuffing bits.
A CRC block can be calculated iteratively by means of a linear feedback shift register associated with the polynomial generator. The register is initialized (normally with the sequence [00 . . . 0] or [11 . . . 1], although any other initial register state could be specified by protocol). The original message is applied bit by bit to the register, followed by as many zeros as the register contains cells. The thus obtained final state corresponds to the CRC block that is attached to the original message. The CRC calculator intermediate states (the linear feedback shift register associated with the CRC polynomial generator) can be imagined to represent the states (nodes) of a trellis. These states are interconnected by transitions (branches) that link a first CRC calculator state to a second calculator state that is attained by inputting a new bit to the calculator when it is in the first state.
On receiving an observation sequence, for example from a demodulator, the Viterbi algorithm can be used to correct the transmission errors: a plurality of path hypotheses across the CRC trellis is constructed, and the most probable path hypothesis with respect to the observation sequence is selected among them. However, this approach does not work if stuffing bits were inserted into the transformed message (the original message followed by its CRC block), given that the CRC block added to the original message does not take into account possible stuffing bits added later.
In the context of the invention, it is therefore proposed to modify the CRC trellis in order to be able to correct a message with the help of the Viterbi algorithm or the SOVA algorithm even in the presence of stuffing bits that were inserted after the calculation and the insertion of the CRC block. For this purpose, conditional transitions between the CRC calculator states are added—transitions that can only be taken in the presence of a stuffing bit.
In order to monitor for the appearance of stuffing bits in the course of constructing a path hypothesis, a state variable P(k, X)) associated with each state (X) is introduced (in the example, X=0, 1, 2 or 3) at “the instant” k. k indicates the number of states (of nodes) traveled in the trellis before arriving at the state considered via the surviving path hypothesis. P(k, X) indicates the number of consecutive bits of value 1 received immediately before reaching the state X at the instant k. Another state variable S(k, X) is introduced that indicates the total number of stuffing bits that were met in the trellis before reaching the state X at the instant k via the surviving path hypothesis. The number S of the ultimately retained path hypothesis permits the number of received information bits and CRC bits to be deduced.
In the course of construction of a path hypothesis, the variable P indicates whether the next bit is an information bit (or CRC bit) or a stuffing bit. In our example, the necessary and sufficient condition for a bit to be detected as a stuffing bit is that the bit be immediately preceded with an uninterrupted sequence of five information bits or CRC bits having a value 1. If the variable P reaches 5 in a node of a path hypothesis (on the right in
In order to finally choose the most probable path hypothesis among the surviving path hypotheses with respect to the observation sequence, the following property can be used: CRC([data, CRC(data)])=0. It therefore follows that the path hypothesis to be selected must arrive at the CRC calculator state [00 . . . 0].
Variant with Trellis Coding
This embodiment of the method uses an ‘extended’ trellis for decoding, the suppression of the stuffing bits and the CRC verification which corresponds to the trellis of a finite state machine that comprises the encoder and the CRC calculator, and in which the encoder and the CRC calculator are fed by the same input, i.e. change states according to the same binary sequence that is input.
In order to provide a better understanding of this method and the concept of the extended trellis, the method will first of all be explained with the help of
Comparative Example without Suppression of Stuffing Bits
The method uses an ‘extended’ trellis, whose nodes not only represent the different encoder states but also the calculator states of the CRC block. It is well known to use, e.g. in the context of the Viterbi algorithm, a trellis representing the states and transitions of the encoder. In contrast, the inventor is unaware that a trellis associated with the CRC calculator (briefly “CRC trellis”) has ever been used in the context of decoding a sequence of symbols and for correcting associated transmission errors. Consequently, an explanation should be made on the meaning of “CRC trellis”).
A CRC block can be calculated iteratively by means of a linear feedback shift register associated with the polynomial generator. The register is initialized (normally with the sequence [00 . . . 0] or [11 . . . 1], although any other initial register state could be specified by protocol). The original message is applied bit by bit to the register, followed by as many zeros as the register contains cells. The thus obtained final state corresponds to the CRC block that is attached to the original message. The CRC calculator intermediate states (the linear feedback shift register associated with the CRC polynomial generator) can be imagined to represent the states (nodes) of the CRC trellis. These states are interconnected by transitions (branches) that link a first CRC calculator state to a second calculator state that is attained by inputting a new bit to the calculator when it is in the first state.
The ‘extended’ trellis nodes corresponds to the Cartesian product {(0; A), (0; B), (1; A), . . . , (3; B)} of the set of the nodes of the CRC trellis {0, 1, 2, 3} and of the set of the nodes of the coding trellis {A, B}. A transition between a first node (α; X), corresponding to a first calculator state αε{0, 1, 2, 3} and a first encoding state Xε{A, B}, to a second node (β; Y), corresponding to a second calculator state βε{0, 1, 2, 3} and a second encoding state Yε{A, B} is possible if the transitions α→β and X→Y of the CRC trellis, respectively the coding trellis, are generated by the same input bit (0 or 1). For example, if the state Y (respectively Z) of the coding trellis leads to the state X when the transmitted bit is 0 (respectively 1) and the state β (respectively γ) of the CRC trellis leads to the state α when the transmitted bit is 0 (respectively 1), then the state (β; YY (respectively (γ; Z)) leads to the state (α; XX when the transmitted bit is 0 (respectively 1). In
The number of extended trellis states amounts to the product of the number of nodes of the coding trellis and of the CRC trellis. The CRC trellis in particular can exhibit a very high number of nodes. There exist e.g. CRC blocks with 64 bits, corresponding to a CRC trellis with 264 possible states.
To explain the progress of an embodiment of the inventive method based on the Viterbi algorithm, the shortest possible CRC (1 bit) was chosen so as to be able to graphically illustrate the construction of the path hypotheses across the trellis (see
Let us assume that the original message is represented by the binary sequence [0 1 1 0]. The CRC block calculated for this original message is [1]. This CRC block corresponds to the parity bit that indicates if the number of ones in the original message is even. The data packet (transformed message) obtained by concatenation of the original message and the CRC block is [0 1 1 0 1].
By applying the coding trellis of
When the final state is reached, the path hypothesis with the minimum distance is selected. It should be noted that in the case of the example, the path hypotheses that arrive at the nodes (0; B) and (1; B) possess the same minimum distance 1. Here, the property CRC([data, CRC(data)])=0 is used, since it follows from this that the final state of the CRC calculator must be 0. Consequently, the path hypothesis leading to the state (0; B) is retained. The message that is found is therefore [0 1 1 0 1]. The transmission error has been corrected.
Variant with Suppression of Stuffing Bits
The procedure for the example discussed above may not be applied as such in the case where stuffing bits had been inserted after the calculation of the CRC block.
In order to take account of the (possible) presence of stuffing bits, special transitions are entered into the extended trellis. These transitions are followed when a stuffing bit is received and are defined in such a way that the stuffing bits are taken into account in the same way as the information bits or the CRC bits for the succession of the encoder states, whereas the CRC calculator state remains unchanged when the received bit is a stuffing bit.
Hereinafter, we will assume that the stuffing bits are inserted as defined in the HDLC protocol, i.e. that one stuffing bit of value 0 is inserted immediately after each sequence of five consecutive bits of value 1. Note that this choice has been made solely to be able to illustrate the invention in the context of a practical example. The person skilled in the art will have no difficulty in adapting the method of the invention to other scenarios that involve the insertion of stuffing bits.
The construction of a trellis extended to conditional transitions of stuffing bits starting from a CRC trellis and a coding trellis is illustrated in
If the state Y (respectively Z) of the coding trellis leads to the state X when the transmitted bit is an information bit or CRC bit of value 0 (respectively 1) and the state β (respectively γ) of the CRC trellis leads to the state a when the transmitted bit is an information bit or CRC bit of value 0 (respectively 1), then the state (β; Y) (respectively (γ; Z)) leads to the state (α; X) when the transmitted bit is an information bit or CRC bit of value 0 (respectively 1).
The conditional transitions are made in the trellis only if a stuffing bit is received. In order to monitor for the appearance of stuffing bits in the course of constructing a path hypothesis, a state variable P(k, (α; X)) associated with each state (α; X) is introduced (in the example, α=0, 1, 2 or 3 and X=A or B) at “the instant” k. k indicates the number of states (of nodes) traveled in the trellis before arriving at the state considered via the surviving path hypothesis. P(k, (α; X)) indicates the number of consecutive bits of value 1 received immediately before reaching the state (α; X) at the instant k. Another state variable S(k, (α; X)) is introduced that indicates the total number of stuffing bits that were met in the trellis before reaching the state (α; X) at the instant k via the surviving path hypothesis. The number S of the ultimately retained path hypothesis permits the number of received information bits and CRC bits to be deduced.
The above table shows the development of the variables P et S in all possible situations. If the received bit is an information bit or a CRC bit with a value 0 then the variable P is reset to zero for the attained state; S remains the same. If the received bit is an information bit or a CRC bit with a value 1 then the variable P is increased by one unit for the attained state and S again remains the same. If the received bit is a stuffing bit (P=5) then P is reset to zero for the attained state, whereas S is increased by one unit.
In the course of construction of a path hypothesis across the extended trellis, the variable P indicates whether the next bit is an information bit (or CRC bit) or a stuffing bit. In our example, the necessary and sufficient condition for a bit to be detected as a stuffing bit is that the bit be immediately preceded with an uninterrupted sequence of five information bits or CRC bits having a value 1. If the variable P reaches 5 in a node of a path hypothesis, then the next transition must be a transition associated with a stuffing bit. Transitions associated with an information bit or a CRC bit are then impossible. If, on the other hand, P<5 in a node of a path hypothesis, then the next transition must be a transition associated with an information bit or a CRC bit. A transition associated with a stuffing bit is impossible starting from this state. In practice, the impossibility of a transition can be expressed by conferring an “infinite” distance to it. A path hypothesis that is extended by a transition of infinite distance in the Viterbi algorithm will not be able to survive and will be eliminated.
To choose the most probable path hypothesis, the characteristic that the final CRC calculator state is equal to 0 can again be used. However, the final encoder state θTCf and the number of bits (information, CRC and stuffing bits) K of the transmitted message are a priori unknown. {circumflex over (K)} and {circumflex over (θ)}TCf represent the values of K, respectively θTCf, among the possible values of K and θTCf, which together minimize the distance Γ(K, (0; θTCf)):
with the constraint: Smin≦S(K, (0; θTCf))≦Smax and
Nmin≦K−S(K, (0; θTCf))≦Nmax,
where Smin and Smax designate respectively the minimum number and the maximum number of stuffing bits, and Nmin et Nmax designate respectively the minimum number and the maximum number of information bits and CRC bits. These numbers are defined in the context of the application. For example, for AIS, Smin=0 and Smax=4 and Nmin=Nmax=184. {circumflex over (K)} can assume any value between the minimum number of bits Kmin=Nmin+Smin and the maximum number of bits Kmax=Nmax+Smax.
Example of a Computer Programmer
A source code for a computer programmer used to implement the method according to the preceding example is briefly presented below. The computer programmer excerpts that are referred to are to be found in the appendix at the end of the description.
The first excerpt of the programmer relates to the initialization of the variables. In the context of the programmer, the initial state of the extended trellis is designated by (A; α). A (=the initial state of the CRC calculator) is initialized according to the communication protocol. In the case of AIS, which uses CRC-16, A is initialized to 216−1. The distance Γ(0, (A; α)) is set to zero for all possible values of α (=initial encoder state) if α is unknown. If α is known then: Γ(0, (A; α))=0. The state variable R(k, (θCRC; θTC)) corresponds to the bit (0, 1, or BS) associated with the last transition at the instant k of the surviving path hypothesis at the node (θCRC; θTC).
In the second excerpt of the programmer, the transition variables are updated for each received symbol.
xk designates the symbol received at the instant k, Ns the number of possible symbols, Ss the s-th symbol (of the possible symbols NS, Distance(xk, Ss) is the distance between the symbol received at the instant k and the symbol Ss. θCRC et θTC are the states of the CRC block calculator and the encoder respectively. NCRC represents the number of possible states of the CRC trellis and NTC the number of possible states of the coding trellis. NextS(θTC, t) refers to the number (s) of the symbol when the encoder is found in the state θTC and a bit t is received (t can assume the values 0, 1, or BS). The transition variable Γtrans((θCRC;θTC),t) is defined at the instant k as the sum of Γ(k−1,(θCRC;θTC)) and the distance between the symbol received at the instant k and the symbol corresponding to the transition that starts from the state (θCRC; θTC) and that is associated with the bit t. The transition variable Strans(θCRC; θTC) is defined at the instant k as S(k−1, (θCRC; θTC)) incremented by one if a stuffing bit is received after the state (θCRC; θTC) at the instant k. The transition variable Ptrans((θCRC; θTC), t) is defined at the instant k as P(k−1, (θCRC; θTC)) incremented by one when the state (θCRC; θTC) is followed by a bit of one (t=1) at the instant k. In the case where the received bit is not a stuffing bit (t≠BS), the transition variables are updated as in the conventional Viterbi algorithm. In the opposite case, only the conditional transitions remain possible (an infinite distance is attributed to the transitions associated with an information bit or CRC bit).
The third part of the programmer deals with the calculation of the state variables. The function PrevθCRC(θCRC, t) refers to the CRC calculator state that precedes the state θCRC if the bit t is received. The function PrevθTC(θTC, t) refers to the encoder state, to which follows the state θTC if the bit t is received.
In the fourth excerpt, the optimum path hypothesis is retraced across the extended trellis. Starting from the estimated final state (0; {circumflex over (θ)}TCf), the preceding states are determined iteratively by following each time in the reverse direction the transition branch that survived the currently located state. Each time a transition is followed that corresponds to an information bit or a CRC bit (t=0 or 1), the corresponding bit is saved in the variable Un. The sequence (Un) represents the decoded message from which the stuffing bits have been eliminated.
Results of Simulations
In order to illustrate the performance of a decoder that implements the method according to the invention, simulations were carried out for the case of an AIS transmission chain, such as the one illustrated in
The decoder according to the invention is compared with a receiver based on an optimal GMSK modulator that uses the coherent demodulation based on the Viterbi algorithm. In the NRZI decoding under consideration, a change is associated with the 0 bit and the 1 bit is detected if there is no change.
Excerpts from the Computer Program
Number | Date | Country | Kind |
---|---|---|---|
11 50019 | Jan 2011 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/050047 | 1/3/2012 | WO | 00 | 7/1/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/093116 | 7/12/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7876865 | Peach | Jan 2011 | B2 |
8559540 | Sun | Oct 2013 | B2 |
20040008074 | Takehara | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
1089442 | Apr 2001 | EP |
1928179 | Nov 2006 | EP |
555932 | Mar 1999 | JP |
2007295532 | Nov 2007 | JP |
Entry |
---|
G. Bollati, “A 450Mbit/s Parallel Read/Write Channel with Parity Check and 16-State Time Variant Viterbi”, IEEE2000 Custom Integrated Circuits Conference, May 24, 2000, pp. 319-322; XP002288505. |
Dragan Petrovic, “List Viterbi Decoding with Continuous Error Detection for Magnetic Recording”, Globecomm 2001 vol. 5, pp. 3007-3011, XP010747545. |
Juan Song, “Design and Implementation of WTB Controller Using SOPC Technology”, Signal Processing, 2008 pp. 2804-2807, XP031389651. |
Robin Hoel, “Design Note DN504, Fec Implementation” Texas Instruments Design Notes Repository, Jan. 1, 2007; Retrieved from the internet URL: http//focus.ti.com/lit/an.swra113a/swra113a.pdf, XP002647992. |
Article, “Convolutional Code”, Retrieved from Internet URL: http://web.archive.org/web/20100429174641/http:wikipedia.org/wiki/Convolutional—code; Retreived Mar. 3, 2012; XP002671325. |
International Search Report for corresponding application PCT/EP2012/050047 filed Jan. 3, 2012; Mail date Apr. 2, 2012. |
Dr. Stephan Holsten et al. “Global Maritime Surveillance With Satellite-Based AIS”, Oceans May 14, 2009. |
Japanese Office Action issued Oct. 28, 2014 re: Application No. 2013-546736. |
Yu Hasegawa et al. “A Decoding Algorithm for q-ary Turbo Codes by Deleting Trellis Branches”, IEICE Technical Report Jul. 14, 2005, vol. 105, No. 190, pp. 9-14. |
International Preliminary Report in Patentability for corresponding application PCT/EP2012/050047 filed Jan. 3, 2012; Mail date Jul. 18, 2013. |
Number | Date | Country | |
---|---|---|---|
20130290817 A1 | Oct 2013 | US |