METHOD FOR COUNTING CHROMATID COPY NUMBERS IN A SINGLE CELL

Information

  • Patent Application
  • 20130102490
  • Publication Number
    20130102490
  • Date Filed
    May 04, 2011
    14 years ago
  • Date Published
    April 25, 2013
    12 years ago
Abstract
The present invention provides a method for counting the absolute copy number of a nucleic acid sequence in a cell, which comprises the following steps: (i) dividing a lysate of the cell or a lysate of a sample of the cell into a plurality aliquots: (ii) providing conditions suitable for the amplification of the nucleic acid sequence in each aliquot: (iii) counting the number of aliquots in which the nucleic acid was amplified in step (ii) and directly deducing the copy number of the nucleic acid sequence in a cell. The method may be used to count chromatid copy number, for example to investigate the ploidy of a cell such as an oocyte or an embryo-derived cell.
Description

The present invention relates to a method for counting the copy number of a nucleic acid sequence in a cell, for example a single cell. The method may be used for counting the copy number of a chromatid in a cell. The ploidy status of the cell may be investigated by counting the copy number of chromatids for each chromosome in the cell.


BACKGROUND TO THE INVENTION

In vitro fertilisation (IVF) is a process by which egg cells are fertilised by sperm in vitro and the resultant zygote transferred to the patient's uterus with the intent to establish a successful pregnancy. The first human baby resulting from an IVF procedure was born in 1978, and since then IVF has become a major treatment for infertility when other methods of assisted reproductive technology have failed.


Despite the fact that IVF procedures are now relatively routine in many countries, clinical pregnancy rates and baby take home rates after IVF are still poor. Chromosomal abnormalities, which usually cause miscarriage, result predominantly from anomalies during female meiosis. A major factor is advanced maternal age and its impact on the quality of the oocyte. It is known that the decreasing fertility of older women is mainly caused by age-dependent increases of aneuploidies in oocytes (and embryos). Selection of euploid oocytes is thus an attractive strategy to increase the number of live births following IVF procedures.


The ploidy status of oocytes can be indirectly investigated by analysing the chromosome content in polar bodies (PB) I and II. Polar bodies are results of the first and second meiotic division before and after fertilisation (see FIG. 1).


Errors in meiotic divisions occur frequently and increase with maternal age; mechanisms are chromosome non-disjunction and early sister chromatid separation with higher frequency in meiosis I. Depending on the mechanism of malsegregation various chromosomal constellations can occur in oocyte and PB as exemplified for meiosis I (see FIG. 2).


At a slightly lower frequency, errors occur also during meiosis II due to non-disjunction and chromatid malsegregation. In order to provide a true picture of the chromosome content of the ooctye, ideally one would need to investigate the chromosome content of PB I and II for all chromosomes at the resolution of chromatids.


Although preimplantation genetic diagnostic (PGD) procedures are known, all are associated with shortcomings. Fluorescence in situ hybridisation (FISH) is sometimes used with different colour fluorescence for each chromosome. So far, this technique has been used with a maximum of 12 chromosomes. As only a subset of chromosomes is investigated, this leaves non-stained chromosome aneuploidies undetected. Array-based methods have also been used, but they have a sensitivity which does not always resolve below the chromosome level, meaning that they may not detect sister chromatid malsegregation which can occur in both meioisis I and II leading to aneuploid embryos. Moreover the array-based methods take at least 48 hours, thus making embryo freezing and implantation in a consecutive cycle necessary.


There is thus a need for improved methods for investigating the ploidy status of oocytes.


SUMMARY OF ASPECTS OF THE INVENTION

The present inventors have developed a method which determines the absolute copy numbers of nucleic acid sequences, such as genomic markers, within a single cell. The copy numbers of nucleic acid sequences may, for example, represent the total number of each type of chromatid in the cell.


The method has been validated by chromatid counting in a haploid polar body and a diploid fibroblast at telophase, to assess the number of chromatids and through this the ploidy status of such single cells.


Thus in a first aspect, the present invention provides a method for counting the absolute copy number of a nucleic acid sequence in a cell, which comprises the following steps:

    • (i) dividing a lysate of the cell or a lysate of a sample of the cell into a plurality of aliquots;
    • (ii) providing conditions suitable for the amplification of the nucleic acid sequence in each aliquot;
    • (iii) counting the number of aliquots in which the nucleic acid was amplified in step (ii) and thus the copy number of the nucleic acid sequence in the cell.


In step (i), the lysate may be divided into at least 8 aliquots per cell used to make the lysate. Where the cell is diploid, the lysate may be divided into at least 16 aliquots per cell.


Where a sample of the cell is used in step (i) it may comprise 10 cells or fewer. In order to work out the copy number of the nucleic acid, it is necessary to know the exact number of cells. In one embodiment, a single cell is lysed to provide the lysate of step (i). An advantage of using a single cell is that it avoids any inaccuracy associated with obtaining the cell number. Page: 3 Another advantage is that it determines copy-number unambiguously for that cell; with two or more cells, the total number of copies may be known, but there is no guarantee that all the cells have the same copy-number.


In a second aspect, the present invention provides a method for counting the absolute copy number of a chromatid in a cell by counting the copy number of one or more nucleic acid marker(s) unique to the chromatid using a method according to any preceding claim.


The copy number of a plurality of nucleic acid markers from the chromatid may be determined in order to analyse multiple loci on each chromatid. The plurality of nucleic acid markers may comprise one or more pairs or multiples of markers which occur in close proximity on the chromatid. This helps to monitor for PCR failure due to “allele dropout” (see below).


It is theoretically possible for sister chromatids to be apportioned to the same aliquot (co-segregate) which may lead to an underestimation of the chromatid number. Such errors can be overcome by analysing a plurality of markers for a given chromosome. Since the chromosomes break upon isolation, the markers segregate independently, so it is unlikely that co-segregation of one marker will occur at the same time as co-segregation of another marker, provided that the markers are far apart on the chromosome. In connection with this embodiment, the plurality of nucleic acid markers may comprise markers which occur far apart on the chromatid.


Where the method comprises analysis of a plurality of markers, the highest number indicated gives the absolute copy number of the nucleic acid in the cell. Markers which give a number lower than this maximum may represent an underestimate due to co-segregation and/or allele drop-out. These lower numbers can therefore be ignored.


The most frequent aneuploidies in humans are trisomy 21, 18 and 13. Hence, the method of the invention may involve counting the copy number of chromatids from one or more chromosomes 21, 18 or 13.


The method may count the absolute copy number of a plurality of chromatids in the cell, for example it may count the chromatids from at least 3 chromosomes such as chromosomes 21, 18 and/or 13.


In a third aspect, the present invention provides a method for investigating the ploidy status of a cell, by counting the absolute copy number of chromatids for each chromosome in the cell by a method according to the second aspect of the invention.


The “cell” may be a cell structure such as a polar body.


The cell may be derived from a cleavage stage embryo.


The cell may be a trophectoderm cell of a blastocyst.


The cell may be a fetal cell, for example from an amniotic fluid or a chorionic villus sample.


The cell may be in telophase.


In a fourth aspect, the present invention provides a method for counting the copy number of a chromatid in an oocyte, which comprises the step of counting the copy number of the chromatid in the oocyte-associated cell body by a method according to the second aspect of the invention and directly deducing the copy number of the chromatid in the oocyte.


In a fifth aspect, the present invention provides a method for investigating the ploidy status of an oocyte by investigating the ploidy status of the oocyte-associated polar body by a method according to the third aspect of the invention and directly deducing the ploidy status of the oocyte.


The oocyte may be from a human subject of 35 years or older. The oocyte may be from a human subject (of any age) who has fertility problems or has or carries an inheritable disease. The oocyte may be from a human subject undergoing IVF treatment.


In a sixth aspect, the present invention provides a method for in vitro fertilisation of an oocyte, which comprises the step of selecting an oocyte determined to be euploid by a method according to the fifth aspect of the invention.


The ploidy status of both polar body I and polar body II may be investigated.


In a seventh aspect the present invention provides a method for investigating the ploidy status of an embryo by investigating the ploidy status of an embryo-derived cell(s) by a method according to the fifth aspect of the invention.


In an eighth aspect, the present invention provides a primer set for use in a method according to the second aspect of the invention, which comprises a plurality of primers capable of amplifying a plurality of nucleic acid markers from a chromatid.


The set may comprise primers capable of amplifying one or more nucleic acid markers from a chromatid from each chromosome in the cell.


The set may comprise primers to amplify at least four nucleic acid markers per chromatid.


The set may comprise one or more primer(s) capable of amplifying or detecting a disease-specific gene, allele or mutation.


The set may comprise primers capable of amplifying one or more pairs or multiples of nucleic acid markers which occur in close proximity on the or each chromatid and/or primers capable of amplifying one or more pairs or multiples of nucleic acid markers which occur far apart on the or each chromatid.


As the method of the invention counts chromatids directly, this system is the only technique to date that allows detection of all kinds of malsegregation of chromosomal material for all chromosomes. It is thus the only technique which provides full and accurate information on the ploidy status of a cell.


Other major advantages of the method include the following:

    • (i) unlike other DNA counting techniques the method of the present invention does not require whole genome amplification or any hybridisation step. This obviates any problems that might arise from incomplete genomic coverage, region specific genome amplification, incomplete suppression of repeat sequences within the probe and removes any risk of cross-hybridisation, as can occur in short oligo arrays. There is also no need of DNA labelling with fluorescent dyes and metaphase chromosomes or BAC clones for hybridisation;
    • (ii) as the method is essentially digital (counting molecules), interpretation of the results is simplified, in contrast with, for example micro-array approaches, which can require complex algorithms for interpretation;
    • (iii) unlike methods such as FISH, the method of the invention is suitable for automation and high throughput while still being easily applicable for manual operations such as gel electrophoresis. Therefore the method of the invention has no mandatory requirement for machinery, such as arrayers.
    • (iv) with the method of the invention, a highly desirable time frame can be achieved. Array based methods generally need at least 48 hours to obtain a result, making embryo freezing and implantation at a consecutive cycle necessary. With the method of the invention, on the other hand, a result for all chromosomes can be obtained within 24 hours. Thus if the method of the present invention is used to investigate the ploidy status of an embryo, this obviates the need for freezing and implantation in a subsequent cycle; and
    • (v) when the method of the present invention is used on fetal cells, a significant reduction of time by which the diagnosis can be delivered can be achieved, compared to the time needed before conventional cytogenetic karyotyping, as there is need only of a few dividing cells (1 week instead of 2 weeks).





DESCRIPTION OF THE FIGURES


FIG. 1. Meiosis I is initiated during fetal development.


After homologous chromosome synapsis and initiation of recombination, meiosis arrests in the first meiotic prophase and is only resumed at ovulation. After completion of meiosis I the oocyte undergoes meiosis II and arrests in metaphase. If no fertilisation takes place the oocyte is degraded; if fertilised meiosis II is completed.



FIG. 2. Results of chromosome segregation and malsegregation in meiosis I.


A normal meiotic division results in the segregation of two homologous chromosomes with 2 chromatids each (euploidy). In the case of chromosome non-disjunction both homologous chromosomes segregate to the same pole leading to either quatrosomy or nullisomy in the oocyte. The other frequent mechanism is early sister-chromatid separation leading to either trisomy or monosomy in the oocyte.



FIG. 3. Chromatid counting through single cell MCC.


PB I is lysed and the cell lysate is dispensed over 8 PCR reaction wells (aliquots), leading to single DNA molecules at limiting dilution with 0.25 genomes per PCR well in the case of euploidy. After 2 rounds of specific PCR amplifications the number of chromatids per chromosome is analysed by simply counting the numbers of positive PCR reactions representing target sequences on all chromosomes. In this example, the DNA content is divided into only 8 aliquots, raising the possibility that two chromatids may occasionally co-segregate (ie, be apportioned to the same aliquot) and be mis-counted as one. Such errors can be overcome either by dividing the sample into more aliquots (reducing the chances of co-segregation), or by analysing multiple markers scattered along each chromosome (since the chromosomes break upon isolation, so that the markers segregate independently and hence co-segregation of two copies of one marker will not occur at the same time as co-segregation of two copies of another marker).



FIG. 4. Analysis of a polar body I with 4 markers per chromosome.


PB I is expected to contain 2 copies for all chromosomes and was diluted into 8 aliquots which equals an average DNA content of 0.25 genomes per aliquot. The 4 markers analysed per chromosome were not linked but rather in distances of several megabases. As the primer panel used for this experiment had not been optimised there are several markers which did not work at all or were not robust in consecutive analyses; they are indicated by omission of the primer name. In cases of a missing result in the presence of the proper primer name allele drop out has occurred which is the case for markers 7, 19, 28, 30, 37, 38, 39, 45, 57, 69, 76 and 82. Markers 93-96 cannot be judged as no Y chromosome is present in polar bodies.



FIG. 5. Analysis of a fibroblast at telophase.


The cell was expected to contain 4 copies for all autosomes and 2 copies for chromosomes X and Y and was diluted into 16 aliquots which equals 0.25 genomes per aliquot for the autosomes and 0.125 genomes for the sex chromosomes. The markers used here were linked with 24 markers per chromosome, the chromosomes being chromosomes 10, 21, X and Y. The furthest column to the right gives the counts of positive PCRs per marker, green fields being in accordance with the expected numbers of positives. Again this marker panel was not optimised but demonstrates that the presence of chromatids can be verified. The shift of counts from 4 to 2 nicely reflects the reduction of chromatids from 4 to 2 as from autosomes to sex chromosomes. Moreover linkage can be observed along the markers showing that the DNA strands are intact over several kilobases. Use of a robust primer set with closely linked markers allows one to estimate how much allele drop out occurs, by observing linkage.



FIG. 6. Single cell MCC of polar body I and II with sensitivity at the chromatid level.


(a). Examples of euploid chromosomes.


(b). Example of euploid chromosome 14 and aneuploid chromosome 15 due to a meiosis II error.


(c). Meiosis I error resulting in a trisomy of the zygote.


(d). Repair of a meiosis I error with resulting euploidy.



FIG. 7. Increase of result robustness through remote and clustered markers.


In this scheme a PB1 has been analysed with markers on selected chromosomes. Markers are composed of 2×4 clustered markers per chromosome thus analysing 2 independent regions per chromosome at a redundacy of 4. Blue boxes indicate the PCR aliquot with a positive PCR, numbers within the boxes are the melting temperatures of the PCR products which are specific for each marker. With our lysis protocol DNA molecules have a length of several kb thus resulting in good linkage patterns. PCR products marked orange are judged as false positives as DNA from external contamination is more fragmented therefore giving the random odd additional signal. In this analysis there is only one marker with a false too low result—the forth marker on Xp. The linkage pattern clearly indicates that it has to be ADO as all other markers give 2 signals in identical PCR aliquots.



FIG. 8. Strategy to ensure results for all chromosomes.


A combination of independent and linked markers distributed along all chromosomes should provide sufficient redundancy to compensate for signal loss due to DNA fragmentation, ADO and cosegregation. Each block of markers (brown and yellow) represents linked markers with distances of 500-1000 bp interrogating 6 independent regions with 2 (brown) and 4 (yellow) markers per region, each marker confirming the result of the other markers per region.





DETAILED DESCRIPTION
Copy Number

In a first aspect, the present invention provides a method for counting the copy number of a nucleic acid sequence in a cell.


The copy number is the number of copies of the nucleic acid sequence in the genome of the cell.


The method comprises the steps of

    • (i) dividing a lysate of the cell into a plurality of aliquots;
    • (ii) providing conditions suitable for the amplification of the nucleic acid sequence in each aliquot;
    • (iii) counting the number of aliquots in which the nucleic acid was amplified in step (ii) thus the copy number of the nucleic acid sequence in the cell.


The number of aliquots which test positive give an absolute number for the copy number of nucleic acids in the cell. For example, if a single cell is lysed and the lysate split into multiple aliquots, two of which test positive by polymerase chain reaction (PCR-see below), it can be directly deduced that the cell contained two copies of the nucleic acid. For a single cell, the number of positive wells equates with the copy number of the nucleic acid, assuming there is no co-segregation, which is explained in more detail below.


It is possible to perform the method using more than one cell, as long as the exact number of cells in the sample is known or can be derived. For example, if two cells are lysed and the lysate split into multiple aliquots, four of which test positive by PCR, it can be directly deduced that the cells each contain two copies of the nucleic acid. The copy number of the nucleic acid per cell may be directly calculated by dividing the number of aliquots which test positive with the number of cells in the sample.


WO 2007/129000 describes a method of measuring the copy number frequency of one or more nucleic acids in a sample by comparing the frequency with which PCR amplification occurs of a) a test marker and b) a reference marker at limiting dilution.


In the method of WO 2007/129000 the objective is to discover the average number of copies of a given marker in a population of cells (typically at least ten cells). Using this method, one arrives at an estimate of mean copy-number by statistical methods. The amount of DNA per aliquot is chosen such that a large proportion (typically 50%) of aliquots are positive for the marker sequence leading to a high rate of co-segregation, and the results are deconvoluted statistically. In the method of present invention, on the other hand, the amount of DNA per aliquot is ideally small enough that co-segregation is rare; and rather than derive a statistical estimate of copy-number, the method provides an exact copy-number for a given nucleic acid in a cell.


The method of WO 2007/129000 uses processed genomic DNA, produced by a method involving cleaning steps. By contrast, in the method of the present invention, the total cell content plus lysis buffer is put into the PCR reaction as any cleaning step would be likely to cause a loss of material, i.e. loss of DNA.


Providing and Correcting for Under-Estimation

In the method of the present invention it is possible that two copies of a given target sequence (“marker”) may happen to fall into the same aliquot as the DNA is divided (ie, they may “co-segregate”). Since PCR detects only the presence or absence of the marker in an aliquot, such instances lead to an under-counting of the copies of that marker. Such co-segregation, and hence under-counting, is statistically simple to predict and to take into account.


Errors arising from co-segregation can be reduced by splitting the DNA into more aliquots, so that co-segregation becomes less likely.


The cell lysate may be split into at least 5, 10, 15, 20 or more aliquots.


Each aliquot may have an average of 0.25 genomes per aliquot or less, for example 0.20, 0.15 or 0.1 genomes per aliquot or less.


Alternatively, or in addition, errors arising from co-segregation can be reduced by analysing multiple markers within the same nucleic acid sequence.


For example, where the method of the present invention is used for chromatid counting, chromatids break upon extraction, so that if multiple markers are used, they behave independently especially if they are far enough apart on the chromatid. Thus, whilst two copies of one chromatid marker may co-segregate and lead to an underestimate of chromatid number in that cell, two copies of another marker on the same chromosome may not. Where multiple markers are used in this way, the true chromatid number of the cell is the highest number indicated by any of the markers.


Errors may also arise due to PCR failure (“allele dropout”). This can be addressed by selecting markers known to amplify efficiently, by using multiple markers on each chromosome, and/or by using pairs of markers which are nearly adjacent on the chromosome. In this last case, one would expect both members of a pair to co-segregate (since the DNA is unlikely to break in the very small interval between them); failure of co-segregation of such paired markers would be indicative of PCR failure. The same approach can be extended to use triplets (or more) of markers in the same way.


It is difficult to rule out undesired co-segregation and allele dropout completely. However, they can be kept within manageable limits, and their frequency can be either predicted (co-segregation) or monitored (allele dropout). By analysing multiple loci on each chromosome, one can obtain a nucleic acid copy number and a measure of confidence in that number.



FIGS. 7 and 8 show strategies for maximising robustness of the method.


Nucleic Acid

The term “nucleic acid” as used herein refers to a deoxyribonucleotide or ribonucleotide in either single or double-stranded form.


The nucleic acid may be genomic DNA.


The nucleic acid may be part of a chromatid or a chromosome.


A chromatid is one of the two identical copies of DNA making up a chromosome, which are joined at their centromeres. When the centromeres separate (during anaphase of mitosis and anaphase 2 of meiosis), the two strands are called sister chromatids.


The chromatid may be from a chromosome which is commonly associated with aneuploidy, such as chromosomes 21, 18 and 13.


In addition to counting chromatids, the method of the invention may be used for many other applications which involve a copy number change, for example nonreciprocal translocations, deletions or trinucleotide repeat disorders. It is even possible to detect reciprocal translocations and inversions by using linked markers spanning the breakpoints.


Cell

The cell under investigation using the method of the present invention may be a haploid or diploid cell.


The cell may be derivable from a cell sample such as a blood, plasma, serum, saliva, urine, tears, tissue, lymph, or tumour sample.


The cell may be a gamete such as an oocyte or a sperm cell.


The “cell” may be a cell structure such as a polar body.


Asymmetrical cell division (cytokinesis) leads to the production of polar bodies during oogenesis.


There may be one or two polar bodies in the oocyte. The first polar body is one of the two products after completion of meiosis I and may be considered haploid, with 23 duplicated chromosomes in humans (one of each pair of homologous chromosomes). The second polar body is also haploid, with 23 unduplicated chromosomes. Both are relatively small and contain little cytoplasm.


Polar bodies are the by-products of the egg's division during meiosis. As an egg matures, it goes through a two-step division process, dividing once at the time when ovulation would occur and again at the time of fertilization. The two haploid polar bodies are the by-products of this division, and are essentially discarded by the egg. By analyzing the polar bodies, it is possible to infer the genetic status of the egg, as shown in FIG. 3 and FIG. 6a-d.


The cell may be derivable from a pre-implantation embryo. For example, the cell may be derivable from a cleavage stage embryo or from a blastocyst. The cell may be a trophectoderm cell from a blastocyst.


The cell may be derivable from a post-implantation embryo. For example, the cell may be an embryonic cell derivable from an ongoing pregnancy, such as a cell from an amniotic fluid or chorionic villus sample.


The oocyte or embryo may be from or for a female subject who has one or more of the following:

    • (i) advanced maternal age, for example at least 35, 37 or 40 years;
    • (ii) a past history of repeated implantation failure; and/or
    • (iii) a past history of repeated miscarriage.


The female subject may be about to undergo IVF treatment or may have an ongoing pregnancy as a result of IVF treatment. The IVF treatment may involve single embryo transfer.


The cell may be at telophase. Telophase is the final stage of both mitosis and meiosis, when a new nuclear envelope forms around each set of chromosomes and both sets of chromosomes unfold back into chromatin. The distinguished shape of cells in telophase allows for the selection of single cells at a defined chromosome status, i.e. all chromosome pairs in metaphase with 2 chromatids each, giving 4 copies.


Cell Sample

As mentioned above, it is possible to perform the method of the invention with a plurality of cells, as long as the number of cells is known or can be derived.


The cell sample may have 10 or fewer, 5 or fewer, 3 or 2 cells.


The number of cells in the cell sample may be counted or derived by methods known in the art. For example FACS sorting may be used, or cell may be collected, for example with a micropipette, and directly counted under a microscope using visual control.


Single Gene Defects

The method of the invention may also be used to investigate single gene defects and for mutation screening in the cell. The method of the invention is highly flexible when it comes to the composition of amplification primers, and so primers may be included which amplify disease specific genes or alleles to allow assessment of disease risk. A non-exhaustive list of such single gene disorders is given in Table I.










TABLE 1





Single gene disorder
Gene







Adrenoleukodystrophy (ALD)
ABCD1


Charcot Marie Tooth type 1A (CMT1A)
PMP22


Cystic Fibrosis (CF)
CFTR


Congenital adrenal hyperplasia (CAH)
CYP21A2


Crigler-Najjar syndrome
UGT1A1


Deafness, autosomal recessive
CX26


Duchenne-Becker muscular dystrophy (DMD/DMB)
DMD


Duncan disease - X-linked lymphoproliferative syndrome
SH2D1A


(XLPD)


Ectrodactyly ectodermal dysplasia and cleft lip/
p63


palate syndrome (EEC)


Epidermolysis bullosa dystrophica/pruriginosa
COL7A1


Exostoses multiple type I (EXT1)
EXT1


Exostoses multiple type II (EXT2)
EXT2


Facioscapulohumeral muscular dystrophy
FRG1


Factor VII deficiency
F7


Familial Mediterranean Fever (FMF)
MEFV


Fanconi anemia A
FANCA


Fanconi anemia G
FANCG


Fragile-X
FRAXA


Gangliosidosis (GM1)
GLB1


Gaucher disease (GD)
GBA


Glucose-6-phosphate dehydrogenase deficiency
G6PD


Haemophilia A
F8


Haemophilia B
F9


HLA typing
HLA


Lesch-Nyhan syndrome
HPRT


Limb-girdle muscular dystrophy type 2C (LGMD2C)
SGCG


Marfan syndrome
FBN1


Myotonic dystrophy (DM)
DMPK


Neurofibromatosis 1
NF1


Neurofibromatosis 2
NF2


Phenylketonuria
PAH


Polycystic kidney disease type 1 (PKD1)
PKD1


Polycystic kidney disease type 2 (PKD2)
PKD2


Sickle cell anemia
HBB


Spastic paraplegia type 3
SPG3A


Spinal Muscular Atrophy (SMA)
SMN


Spinocerebellar ataxia 3 (SCA3)
ATXN3


Spinocerebellar ataxia 7 (SCA7)
ATXN7


Stargardt disease
ABCA4


Tay Sachs (TSD)
HEXA


Thalassemia-α mental retardation syndrome
ATRX


Thalassemia-β
HBB


Tuberosclerosis 1
TSC1


Tuberosclerosis 2
TSC2


Von Hippel-Lindau syndrome
VHL


Wiskott-Aldrich Sindrome (WAS)
WAS









Disease risk of the maternal genomic content may be investigated in the case of PB diagnosis, whereas that of both maternal and paternal genomic content may be investigated if embryo or trophectoderm biopsies are performed.


Amplification

As used herein, “amplification” refers to any process for multiplying strands of nucleic acid, such as genomic DNA, in vitro.


Amplification techniques include thermal cycling amplification methods, such as ligase chain reaction; and isothermal amplification methods, such as Strand Displacement Amplification (SDA), Q-beta replicase, nucleic acid-based Sequence Amplification (NASBA); and Self-Sustained Sequence Replication.


The amplification method may be polymerase chain reaction (PCR). PCR involves using paired sets of oligonucleotides of predetermined sequence that hybridise to opposite strands of DNA and define the limits of the sequence to be amplified. The oligonucleotides prime multiple sequential rounds of DNA synthesis catalysed by a thermostable DNA polymerase. Each round of synthesis is typically separated by a melting and re-annealing step, allowing a given DNA sequence to be amplified several hundred-fold in less than an hour.


The amplification step may be automated, making the method suitable for use in high-throughput screening techniques.


Markers

The nucleic acid sequence whose copy number is being determined may be a “marker” for a longer nucleic acid sequence. For example, it may be a marker for a section of genomic DNA, a chromatid or a chromosome.


For chromatid counting, the method may be used to count the number of a plurality of markers for each chromosome. This provides an internal cross-reference for the correct copy number for the chromatid. For the reasons explained above (co-segregation and allele drop-out), a given marker may produce an underestimation for the copy number. If a plurality of markers is used, this can be checked. The marker(s) giving the highest copy number (assuming there is no PCR contamination) can be assumed to give the correct number.


To check for and take steps to avoid errors due to co-segregation, markers may be chosen which are spaced far apart on the chromatid. For example, the markers may be separated by at least 500 kb, at least 1 Mb, at least 3 Mb or at least 5 Mb.


To check for and take steps to avoid errors due to allele drop out, markers may be chosen which amplify nucleic acids in close proximity on the chromatid. For example, the nucleic acids may be spaced by less than 2 kb, for example between 50 and 500 bp.


The marker nucleic acid sequence may be any length that is amplifiable by the chosen method. A disadvantage of using very long marker sequences is that the likelihood of allele drop out is increased. Typically marker sequences are chosen which are 75-130 bp in length.


Ploidy Status

Ploidy corresponds to the number of chromosomes in a cell. In humans, somatic cells are diploid, containing two complete sets of chromosomes, one set derived from each parent; and gametes are haploid.


The number of chromosomes in a single non-homologous set is called the monoploid number (x). The haploid number (n) is the number of chromosomes in a gamete of an individual. Both of these numbers apply to every cell of a given organism. For humans, x=n=23; a diploid human cell contains 46 chromosomes: 2 complete haploid sets, or 23 homologous chromosome pairs (for a female; a male has 22 homologous chromosome pairs, one X and one Y chromosome).


Euploidy is the state of a cell or organism having an integral multiple of the monoploid number. For example, a human cell has 46 chromosomes, which is an integer multiple of the monoploid number, 23. Aneuploidy is the state of not having euploidy. In humans, examples include having a single extra chromosome (such as Down syndrome), or missing a chromosome (such as Turner syndrome).


During oocyte maturation, normal division in meiosis I results in the segregation of two homologous chromosomes, one remaining in the oocyte and one extruded to the polar body, so that both the polar body and the oocyte have two chromatids each (euploidy). If an error occurs, the sharing of chromatids between oocyte and polar body may be unequal, leading to aneuploidy in both the polar body and the oocyte (see FIG. 2).


Using the method of the invention, it is possible to investigate the ploidy status of a cell or polar body for one or more chromosomes. The method may be used for all 22 chromosomes together with X and (if appropriate) Y, producing a complete picture of the ploidy status of the cell.


PRIMER SET

The fifth aspect of the present invention relates to a primer set which comprises primers capable of amplifying a nucleic acid in accordance with step (ii) of the method of the first aspect of the invention.


The term “primer” is used herein interchangeably with “oligonucleotide” to mean a short length of nucleic acid which hybridises specifically to a target sequence enabling the nucleic acid sequence whose copy number is to be determined (i.e. the marker sequence) to be amplified.


The primers may be capable of hybridising at flanking regions of the nucleic acid marker sequence. The primers are chosen to have at least substantial complementarity with the different strands of the nucleic acid being amplified.


The primer must have sufficient length so that it is capable of priming the synthesis of extension products. The length and composition of the primer depends on many factors including, for example, the temperature at which the annealing reaction is conducted, concentration of primer and the particular nucleic acid composition of the primer. Typically the primer has 15-30 nucleotides, such as 18-20 bp.


The term “hybridise specifically” refers to hybridisation of the primer to the target sequence under stringent conditions, that is conditions under which a primer will hybridise preferentially to its target sequence and to a lesser extent to, or not at all to, other sequences.


The primer set may comprise two primers for each marker sequence: one “forward” and one “reverse” primer. Alternatively the primer set may comprise three primers in a hemi-nested configuration.


The set may comprise primers capable of amplifying one or more nucleic acid markers from a chromatid. The set may comprise primers capable of amplifying a plurality of nucleic acid markers from a chromatid. For example, the set may comprise primers capable of amplifying at least 4, 6, 8, 10, 15, 20, 25 or more markers for the chromatid or for each chromatid.


The set may comprise primers capable of amplifying one or more nucleic acid markers from a plurality of chromatids in the cell. For example, the set may comprise primers capable of amplifying markers from at least 3, 5, 8, 12 or 15 chromosomes. The set may comprise primers capable of amplifying markers from each chromosome in the cell.


The set may comprise one or more primer(s) capable of amplifying or detecting a disease-specific gene, allele or mutation.


The set may comprise primers capable of amplifying one or more pairs or multiples of nucleic acid markers which occur in close proximity on the or each chromatid and/or primers capable of amplifying one or more pairs or multiples of nucleic acid markers which occur far apart on the or each chromatid.


The primer set may be provided as part of a PCR kit, which may also contain deoxynucleotide triphosphates and/or Taq polymerase.


The kit may also comprise one or more container(s) and instructions for use.


As the method is highly suited for automated methods, such as high-throughput screening, the primer set may be provided as part of a multi-well plate, such as a 96-well plate, each well being ready to receive and aliquot of lysate.


The invention will now be further described by way of Examples, which are meant to serve to assist one of ordinary skill in the art in carrying out the invention and are not intended in any way to limit the scope of the invention.


EXAMPLES
Example 1
Investigation of the Ploidy Status of Polar Body I

The ploidy status of an oocyte was ascertained by investigating the ploidy status of polar body I (PBI) using the chromatid counting method of the invention with four markers per chromosome.


The polar body was lysed and dispensed into 8 aliquots. PBI is expected to contain 2 copies for all chromosomes, so each aliquot comprises an average DNA content of 0.25 genomes per aliquot.


As shown in FIG. 4, PBI was confirmed to be haploid with 2n for the following chromosomes 1 to 9, 11 to 17 and 19-22 and X. Chromosomes 10 and 18 each gave only one positive PCR and are judged as technical failure.


Example 2
Investigation of the Ploidy Status of a Fibroblast at Telophase

A diploid fibroblast at telophase is expected to contain 4 copies of each autosome and 4 copies of X in females; or 2 copies of X and two copies of Y in males.


A fibroblast at telophase was selected due to its distinguished shape, lysed and divided into 16 aliquots. As for example 1, this gives an average of 0.25 genomes/aliquot for the autosomes and X in the female fibroblast and 0.125 genomes/aliquot for X and Y in the male fibrobast. Linked markes are used for four chromosomes: namely chromosomes 10, 21, X and Y.


As shown in FIG. 5, it was confirmed that the fibroblast in telophase contained 4 copies of chromatids from chromosomes 10 and 21 and two copies of each of the chromatids from the X and Y chromosomes.


This is the first time that the chromosome content of a single cell has been resolved at the chromatid level allowing one to detect directly not only chromosome disjunctions for all chromosomes but also early sister-chromatid separation.


Example 3
Single cell MCC of solar body I and II with sensitivity at the chromatid level
(a) Examples of Euploid Chromosomes.

After correct meiosis I and II polar body I (PB1, PB2) contains 2 copies for all chromosomes while PB2 contains I copy. This is shown for chromosomes 17, 18 and 21 with a set of 12 markers per chromosomes with 2 linked groups of 6 markers (FIG. 6 (a); marker 4 chrom. 17 and marker 8 chrom. 18 did not work and were removed). In most cases 2 chromatids, i.e. 2 positive PCRs are shown in PB1 (red) and 1 chromatid in PB2 (blue). Discrimination between 1 and 2 copies of the chromosomes can be clearly achieved even in the presence of allele drop out or loss of one region of a chromosome as in PB2 for chromosome 18 (m7-12), which is most likely caused by DNA degradation.


(b) Example of Euploid Chromosome 14 and Aneuploid Chromosome 15 Due to a Meiosis II Error.

It was shown that while meiosis I and II (MI and MII) were correct for chromosome 14, a MIT error occurred after correct MI for chromosome 15 (FIG. 6b). Both remaining chromatids segregated into PB2 leaving the oocyte without any chromatid of chromosome 15. As a consequence the resulting zygote has a monosomy of chromosome 15. In this case PB1 and 2 were analysed with 4 independent markers per chromosome.


(c) Meiosis I Error Resulting in a Trisomy of the Zygote.

Due to premature sister chromatid separation at meiosis I, only one chromatid of chromosome 17 segregated into PB1 (FIG. 6c). After correct MII with one chromatid in PB2, the oocyte remains with two chromatids thus leading to trisomy chromosome 17 after fertilisation.


(d) Repair of a Meiosis I Error with Resulting Euploidy.


No mistake was detected for chromosome 10 where PB1 has 2 positive PCRs for 4 markers and PB2 1 positive PCR. For chromosome 16 it was found that the opposite is the case: only 1 signal in PB1 and 2 signals in PB2 (FIG. 6d). This indicates that in MI only 1 chromatid segregated into PB1 leaving the oocyte with 3 chromatids at MII. The inventors predict that this MI error was then rescued by segregation of 2 chromatids into PB2 thus leaving the oocyte with a corrected haploid (in) chromosome 16.


Materials and Methods
Polar Body Collection, Cell Lysis and Limiting Dilution

The polar body is deposited in 30 μl of distilled water, frozen and kept until analysis at −20° C. or lower. The first step for single cell MCC is cell lysis and DNA preparation in a system approximating a closed system such that no material is taken from the original vial in which the PB is stored. 10 μl cell lysis buffer is added to the tube containing Triton X-100 (2%, 0.1% final concentration) Tween 20 (2%, 0.1% final concentration) and Proteinase K (20 μg/μl, final concentration 0.25 μg/μl), briefly mixed, overlayed with oil and incubated at 50° C. over night. Cell lysats (40 μl) are dispensed into 8×5μl aliquots, overlayed with oil and proteinase K is heat inactivated by incubation at 95° C. for 5 minutes.


Amplification with Seminested PCR


The protocol is similar to the one described in WO2007/129000 for MCC with genomic DNA. This method has been proven to be robust and to allow multiplexing at very high levels. The following represents a typical protocol; precise conditions (number of multiplexed markers; precise volumes and thermocycling conditions, etc) may be varied as appropriate.


The first round of PCR analysis is a multiplexed amplification step for each PCR well (i.e. aliquot) with all pooled outer primers in each PCR well, so that all copies of any target sequence are amplified to some extent. 5μl mastermix for the multiplex first round PCR is added and thermocycling is carried out with hot start at 93° C. for 9 min, followed by 25 to 50 cycles of 20s at 94° C., 30s at 50° C. and 1 min at 72° C.


The second round of PCR uses the product of the phase 1 multiplex PCR at a dilution of 1:100 in water as a template to amplify individual marker sequences on each chromosome as semi-nested PCR with internal forward and reverse primers in a volume of 10 μl. Thermocycling under oil is carried out with hot start at 93° C. for 9 min, followed by 33 cycles of 20s at 94° C., 30s at 52° C. and 1 min at 72° C. Prior to PCR analysis on 108-well horizontal 6% polyacrylamide gels 8 μl 2× loading buffer (15% w/v Ficoll, 0.1 mg/ml bromophenol blue, 4×SyBr Green I) is added and gels are run at 10V/cm for 10 min digital PCR analysis is performed by scoring presence or absence of PCR product in each sample.


The second round of PCR and digital PCR read out has been automated as melting curve analysis on the BioMark system of Fluidigm company. This system has proven most suitable and convenient as it provides the following set up:


(i) PCRs are run on a 96×96 well chip, which allows amplification of 96 DNA templates with 96 primer pairs. PCR run time is short (2.5 hours) and need of reagents is minute as PCRs are run in a 5 nanoliter scale;


(ii) digital PCR read out can be performed by melting curve analysis on the chip on the same platform within 45 minutes and results can be exported into excel databases which can be easily analysed; and


(iii) the automation procedure meets one important requirement for PB diagnosis, which is that the time for analysis should be as short as possible.


Primer Sets

Primers are selected using various criteria after masking repetitive elements from the human genomic sequence (Ensembl database, NCBI release 37, retrieval of masked sequence; http://www.ensembl.org). Amplicon length of the external products is a maximum of 120 bp and the internal product between 75 and 100 bp. Amplicons were located such that they build two triplets (see above, under “Statistical considerations and error avoidance”) of linked markers per chromosome; on metacentric chromosomes 1 cluster on the short arm and 1 cluster on the long arm of the chromosome, in the case of acrocentric chromosomes the clusters were situated proximal and distal to the centromere. All primer sets were checked electronically against the reference genome to ensure that they were predicted to give unique products (http://www.ncbi.nlm.nih.gov/projects/e-per). Typically primer length is 18-20 bp with melting temperature of 52-60° C. Design requires at least two guanine or cytosine bases at the 3′ end and at least one at the 5′ end.


As many as 1200 primers have been multiplexed with robust results (Eichinger et al. (2005) Nature. May 5; 435(7038):43-57) therefore a marker set for an all-chromosomes-screen can easily enlarged by addition of more primers for disease specific sequences and mutations.


The primers used in this study are listed in Table 2 (see Appendix I). In this Table: Fex=external forward primer; Fin=internal forward primer; and Rvs=reverse primer.


Fibroblast Production and Selection

The fibroblasts were remaining amniocytes after karyotyping. Fibroblasts at telophase were picked with a micropipette under a light microscope with 200× magnification.


All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.









APPENDIX I







Table 2
















Fex
Fin
Rvs






Hsl007a01
Chr1
48000696
CATGAAGTTATGGGGTTAGG
GCTAGTTTCCTCTTGAAGG
CATGTGGCAGGCACATACG
CATGAAGTTATGGGGTTAGGTGCTAGTTTCCTCTTGAAGGAGAAA








CAGATAGTTTGAGTGTGTCAGCATGTTAGATGATGACCATATCGT








ATGTGCCTGCCACATG





Hsl007a02
Chr1
48001391
GAACCATCTCTTTCTTTCCC
CTCTGCATACACTTTTCTCG
CTGACCTCAGAGCTCATGG
GAACCATCTCTTTCTTTCCCTGTTTCATGCTCTGCATACACTTTTC








TCGCCCAGCTTAGAGTGTTAGCTTGGAGCATCCTTGTTTCAAGAC








CATGAGCTCTGAGGTCAG





Hsl007a03
Chr1
48001519
GCCAACAGAGACCTGACC
GTGTGGAATAGGTATGTTGG
GAGAACTTGCATCCATTTGC
GCCAACAGAGACCTGACCTGGTGTGGAATAGGTATGTTGGATAT








GCTTGTGAATGCCTGGCCAGGCAGGATGTGTTTTGAGGCTCACT








GCAAATGGATGCAAGTTCTC





Hsl007a04
Chr1
48002656
CGTGTTTACAGCCCTTTCC
CACAGGCCAAACAGGAAAGG
GCCTATTGCTTTGAGGAGC
CCTGTTTACAGCCCTTTCCAATTCACAGGCCAAACAGGAAAGGG








GGGAGGGGTTAGAGAAGGGCACAAATGTCAGAAATCACAAATCA








TACAGTTGCTCCTCAAAGCAATAGGC





Hsl007a05
Chr1
48004064
GAGCTTCTGTTGAGTGACC
GACTGGCTTCTTCTCTTTGC
CACAACAGGTGTTTGAGAGC
GAGCTTCTGTTGAGTGACCCATTGATAGACTGGCTTCTTCTCTTT








GCCCCAACTAGACCCCTCTGTGAGCTGTTTGTGCTGACCTTGGG








CTGGGAAGATGCTCTCAAACACCTGTTGTG





Hsl007a06
Chr1
201000290
CTTGGAGGCAGCATGTGG
GAGGTCAACCTCTAAAGTGC
GAGTGCTCCATTCACTACC
CTTGGAGGCAGCATGTGGGGAGAGGTCAACCTCTAAAGTGCCAG








CTCTCCAGAAATGCAGCCGGAATGAAGGTTTGAAGGGATGGTAG








TGAATGGAGCACTC





Hsl007a07
Chr1
201000745
CTACCCTCTAGTGATGAGG
CCCTTGGCCTGGAAAAGG
CAGCACCCCAAATCTGATCC
CTACCCTCTAGTGATGAGGGTCCCTTGGCCTGGAAAAGGGGAAG








GAGGAGATAGGGGGCTAGGCCTTGAAGGAAGTCAAACCCTAAGA








CAAGAGGATCAGATTTGGGGTGCTG





Hsl007a08
Chr1
201001078
CACCCTCCTTGGTAAGCC
GACACATGTAAACTGTCCC
GGTGTTTCCCCACTAGCC
CACCCTCCTTGGTAAGCCCCCATCCTAACCCTTTTGTGTGGTAAA








GACACATGTAAACTGTCCCAAAACAAAAGACAGAGAGCAGAGAC








TACCAGAGGGTGAGTGGAGGTACTTGGGTGGGTCTGGCTAGTG








GGGAAACACC





Hsl007a09
Chr1
201001705
GTTGGGCTGGTGCTTGGC
GTGTGCAAAGGGTTTCAGG
CTTCTTGTATTCTTGTGAGG
GTTGGGCTGGTGCTTGGCAGGGTGTGCAAAGGGTTTCAGGCCA








GATTAGTGGAGGTTGAGTGGGGATTGGAGGGTAGGGGTGGATT








GTCATGTGAGCCTCACAAGAATACAAGAAG





Hsl007a10
Chr1
201002050
CAGATGAGGAAACCAAAGGG
GAACATACAAGAGGGAATGG
GAAAGGCTGTCCTGAAACG
CAGATGAGGAAACCAAAGGGCAGAAACATTTTTAGGAGAACATA








CAAGAGGGAATGGGAATTTGTATTCTCCAAGTCCAGGGCCTCAC








TCTGCTGCACCCTGCACGTTTCAGGACAGCCTTTC





Hsl007a11
Chr1
201002871
GACACCATCACGTTTTCAGC
CTCAATACCAGAATCATCGC
CCAGTTGAGGAAACCAAAGC
GACACCATCACGTTTTCAGCTGACACTCAATACCAGAATCATCGC








TTGCCCCTTGTATTTGTGGCCAGTTTATTTTAAAAATGCTTCTGTG








CTTTGGTTTCCTCAACTGG





Hsl007a12
Chr1
201003176
GGTGACATGGTACTAGGG
CAGATGCCAGAAGAATGGG
CTGCTAGAGGAGACACTGC
GGTGACATGGTACTAGGGATCAGATGCCAGAAGAATGGGGGCAA








GACCTTGTGAAATAGGAGTTGGGGTTAAGGTCAGCCTTGTGTTG








GCAGTGTCTCCTCTAGCAG





Hsl007b01
Chr10
9863702
CATGTGAGTGGCTATACAAG
CAACCTAGGCTCAAAATGTG
GAACCTGCTGGAACTGAAG
CATGTGAGTGGCTATACAAGCCAACCTAGGCTCAAAATGTGCAG








TGATAGGGACTATTGCCTGTGATCACAAATTTTCGCATCTTTTATT








TTCTTCAGTTCCAGCAGGTTC





Hsl007b02
Chr10
9863839
GTCACTCTGAATATCTGAGG
GTGCATTAACGTGGAGCAC
CTCATAGAACTTATTGTGCTG
GTCACTCTGAATATCTGAGGTTCAGTGCATTAACGTGGAGCACAG








TGTTTGTTTTGAAAGTCATTCATGAAATAATAACCAATGTTCACCA








GCACAATAAGTTCTATGAG





Hsl007b03
Chr10
9864315
GGTAGAATAGAAAGAAACACC
GACATTTAGAAATGGCCTATC
CCAATATCCCTAAATCTCATC
GGTAGAATAGAAAGAAACACCAGGATATGACATTTAGAAATGGCC








TATCTTCAGATGTAAAGAACTATTTGGGTTAATTTTTTAATTGATAA








TTTGATGAGATTTAGGGATATTGG





Hsl007b04
Chr10
9864801
GGTATGTGAATCTATTTGCAC
CATGCTGAGTATTGTACAAAG
CATAGCCTTCTGTATGTTCC
GGTATGTGAATCTATTTGCACAAAGTAGCATGCTGAGTATTGTAC








AAAGCACACTAAACATCTTTTAAGTCACTTTGAAAATGGCAACAGT








CTCAGGGAGGAACATACAGAAGGCTATG





Hsl007b05
Chr10
9864901
GAACATACAGAAGGCTATGC
GCTATGTTGATACATCTAAGAC
CTTTGTTGCTTTTGTAATGGG
GAACATACAGAAGGCTATGCTGCTATGTTGATACATCTAAGACAA








CTGAGAGAAAAAAATATGCAGGGTAAAATAAACTTCCCATTACAA








AAGCAACAAAG





Hsl007b06
Chr10
9865100
CACTCAACCATTCAGTCTTC
GTTAGAATGAATGACTAAGCC
CAGGATTTAGTGGCTGATAG
CACTCAACCATTCAGTCTTCCAAGTTAGAATGAATGACTAAGCCA








TGATTCGTTTTTCTTGCTTTGATCTATCAGCCACTAAATCCTG





Hsl007b07
Chr10
130654976
CTTGTAAGTTCCAACATCTTC
GAGCATCAGTCAGTTTTAGC
GGGAATTTCTATAAGATGCAG
CTTGTAAGTTCCAACATCTTCAGAGCATCAGTCAGTTTTAGGAGT








GTCATTCTGAAGGCACTCCAAAGCCACCGCTGACTGCATCTTATA








GAAATTCCC





Hsl007b08
Chr10
130655167
CCTCAACAGCATGAATTAGC
CCAGATTCTTTACCTGCTAC
CACAATTCCTATCAAAGCTTG
CCTCAACAGCATGAATTAGCCCCAGATTCTTTACCTGCTACCAAA








GCTAGCCCAGAGGAAGAGGAACAGAGAGCGGACAAGCTTTGATA








GGAATTGTG





Hsl007b09
Chr10
130655893
GTAGACCAAAGGAAGAATGG
CTGCATCAGCTATTCTTTCC
GAGTCAGAAAACCATGACTC
GTAGACCAAAGGAAGAATGGAATCTGCATCAGCTATTCTTTCCTG








AACACAGACCCTAGAATATATTTTTTCTAGAAGTTTTTATATCATA








GTATCAAGAGTCATGGTTTTCTGACTC





Hsl007b10
Chr10
130656501
CAGCTGATCAAGTGAAGCG
CCTTTCCACAGACTATTGAC
GGTTCAAAGCGAAGACTATC
CAGCTGATCAAGTGAAGCGGCCTTTCCACAGACTATTGACGATCT








GTCTCAAGCATTATCTCATAAGTTTCCTTTTATTTTCTCTCCCAAC








CCAGATAGTCTTCGCTTTGAACC





Hsl007b11
Chr10
130656892
GATCTTCATGGACACAAGTC
GTCTGTGAAGATAAAGGAAAG
GGATTAGACCTATTTGTTGAG
GATCTTCATGGACACAAGTCTTGTCTGTGAAGATAAAGGAAAGTA








AAATCACTTATGCAAAAGTAGATATTTGTGACAGACTCCTGGATG








GACCTCAACAAATAGGTCTAATCC





Hsl007b12
Chr10
130657597
GATGAGTGCAGATTTGAAGG
GATACAAGATGTGAACATTGG
CGGAACAATTACAAGTAAAGC
GATGAGTGCAGATTTGAAGGGGAGATACAAGATGTGAACATTGG








AAGCAACCACCATAGGATTCATTACATCAATCATGGATGCTTTAC








TTGTAATTGTTCCG





Hsl007c01
Chr11
36000088
CAGCTTTGCTTTGCTTGGG
GTGATTCTGACCCAGTACC
CATGAGGCTAAGAAAACAGC
CAGCTTTGCTTTGCTTGGGACATGTGATTCTGACCCAGTACCCCA








GACCTGAAGGCCCCTCTATGTGTCAGTCCTGAAAGGATTCGCTG








TTTTCTTAGCCTCATG





Hsl007c02
Chr11
36000805
GTGCTGCATTAGAGTTTGG
CTTGACTAGGTGGAAGAGC
CCAAGGGGATCAAGCAAGC
GTGCTGCATTAGAGTTTGGTCACAGGCTTGACTAGGTGGAAGAG








CTTTCTGAGAGTTGTGTGCAAAAAAACACTTAGCTGCCGTTCCAT








ATTTGCTTGCTTGATCCCCTTGG





Hsl007c03
Chr11
36001041 
GTATGATAGAGTTTTCCTTCC
GTTGACCATGGCTTAGTCC
GAGACAGACAGTCTCAACG
GTATGATAGAGTTTTCCTTCCTGAGGTTGACCATGGCTTAGTCCT








TGCTATACAGGGTAGTGTGAGGATTGGATTTCTCAGGTTAGCGG








AGCTTTAGACGAGCGTTGAGACTGTCTGTCTC





Hsl007c04
Chr11
36002360
CAGATGTGTTTTGATTTCAGC
GTCAATTGCCCAGTGTTTAGG
GGGGTCCCCAGACTGTGG
CAGATGTGTTTTGATTTCAGCCAAGAACAAAGATATTTGATATGTC








AATTGCCCAGTGTTTAGGAAAAAGGATAATTTTGGTTACTGCTTTT








GAACTAGTGGTGGGAACCTTGGAAATCCCCCACAGTCTGGGGAC








CCC





Hsl007c05
Chr11
36002551
GCAAGACTTCCTCGTTTGG
GGTTTTCAGATTGGTTGGG
GCTGTAAGTGGACCATGGC
GCAAGACTTCCTCGTTTGGATTTTGGTTTTCAGATTGGTTGGGGG








AAATCTCACATACGGGAAGAAGAAGAAAAACAAATATAAGTAAGT








TTCCCTTTGGGGCCATGGTCCACTTACAGC





Hsl007c06
Chr11
36003225
CTGCAGTTTGCCAAAGTCG
CAGGATAGACTTGGAAATGC
CTACAGCTGGTTCCTGTCG
CTGCAGTTTGCCAAAGTCGCATTGGCAGGATAGACTTGGAAATG








CAAGGGTGCTTGGCATCTCCCATCAAGTTGGCATTTCCCTGGCTT








TAGCTTTCGACAGGAACCAGCTGTAG





Hsl007c07
Chr11
118001364
CTTGCAGGCCATGGAAGG
CCTACATCTTTCCTGTTAGC
CACTGTAGCAGTAGAGCGC
CTTGCAGGCCATGGAAGGGGACCCTACATCTTTCCTGTTAGCAC








TGCGGGTGGCTTTGTTTAAGCAATGAGCTATGAGAGAACATCTCC








CCTCCTGCTGTGTGCGCTCTACTGCTACAGTG





Hsl007c08
Chr11
118001547
CTGGAGCTCCTGAATTGGG
GGTCTTCATCTTTCTCCGG
GACTTTGCTTTACAATCTTTGG
CTGGAGCTCCTGAATTGGGAGGGTCTTCATCTTTCTCCGGCTTCA








ACCTTAAGTCTGCTCTCCAAATGACTTGATAACACCATAGGAACC








AAAGATTGTAAAGCAAAGTC





Hsl007c09
Chr11
118002383
GATGCACCTGTGCTATTGC
GTTAGGAGGCATGGATACC
GATTGGGTCGATTGACTCC
GATGCACCTGTGCTATTGCCTCCTCTGTTAGGAGGCATGGATAC








CCCCCAGCCTCCTGGAAAGCTGAACATAGGGAGTTAAAGGGTTG








TTCTCCACCGGGAGTCAATCGACCCAATC





Hsl007c10
Chr11
118003606
GCAAACACCTACACGTTGG
CATATCCCCAGTTCCTTCC
CTTCACATGAACGCCTACC
GCAAACACCTACACGTTGGTACATATCCCCAGTTCCTTCCCAGGC








ACTGGCCTTATGCCCAGCACCCGGAAACTCTTTGGAAGGTAGGC








GTTCATGTGAAG





Hsl007c11
Chr11
118004318
GGTATTGTTGTCATCCAAGC
CATGCATAAGATAGTCAAAAG
GCTTTACTTTACTTTGTCCC
GGTATTGTTGTCATCCAAGCCAGAGGAATAAACCATGCATAAGAT






C

AGTCAAAAGCACTGCATATCAGGTGGGAGGTGGGAGGGTAGGG








ACTCCAACCTGGGACAAAGTAAAGTAAAGC





Hsl007d2
Chr11
118004587
CTCCAGATGCCTCAACAGG
GCTCAGGCCAAGAAAGACG
GTAACTGTGGAGTGGATGG
CTCCAGATGCCTCAACAGGCATAGCTCAGGCCAAGAAAGACGGC








TCCTCAAATGTCCAGCATCTGCCCATCATGCATCACCCCTTACAT








GCAGAGCCCATCCACTCCACAGTTAC





Hsl007d01
Chr12
25000837
CACAAAACTAAAGTTGACTCC
GTCTTTGCCAACTCAACAGG
CTCCTCCTATGCTTCTGACC
CACAAAACTAAAGTTGACTCCAAATGTCTTTGCCAACTCAACAGG








ATAATATTAAATGCGGAATATTTTGTTCCCCTTGTACCTCTCCAGG








TCAGAAGCATAGGAGGAG





Hsl007d02
Chr12
25001003
GTTACCACCTTCCCTCTTGC
GAGTTCAATACTTTCTTCTCC
CTCAGGTGGACTATGATCC
GTTACCACCTTCCCTCTTGCCATTTTTAATTTATGAGTTCAATACT








TTCTTCTCCGGTCTCTTCCTTTCCTAAGAGATTTCAAGTCAATTTC








CATGGATCATAGTCCACCTGAG





Hsl007d03
Chr12
25001651
GAGTTTTCAACCTGGCTAGC
GGACACAGGAAGGTGTGC
CTCAATGGGTAGAGAAATCC
GAGTTTTCAACCTGGCTAGCCTAGGACACAGGAAGGTGTGCTCT








AAGCCAGAAGGAGAATAGACTTCCTAGTTTTAATGCACTCCATTT








GGATTTCTCTACCCATTGAG





Hsl007d04
Chr12
25002003
CTGAGTATGCAAACAGCACC
GATACATGCAAAGCAAGAACC
GGACTTGGCCATGAGTTGG
CTGAGTATGCAAACAGCACCATTTGATACATGCAAAGCAAGAACC








CATGCTGCTTAAACCAGTTATTCTCGTTCACCCATAGGGGCATTC








CCAACTCATGGCCAAGTCC





Hsl007d05
Chr12
25002740
CAGTTCCACCTTTCCAGGC
CTTACATACTTGGGATTGGC
GCTCTTTGTACTCTTGAGC
CAGTTCCACCTTTCCAGGCTCTTACATACTTGGGATTGGCCCACA








GGGACACTGGATTAAAGGTTCCACTTGAAAAATAAGGTCCCACTG








GGCTCAAGAGTACAAAGAGC





Hsl007d06
Chr12
25003293
CATCCTTCTGTTTCATAGCC
GACTGCTTCAGGACATGGC
CTACCTGCTAGTTGATGTGG
CATCCTTCTGTTTCATAGCCTAAGTGACTGCTTCAGGACATGGCA








GGGTCTTCAGGAGGTGGTAGGTGCAGGCGAATGTGTCATTAGCA








CACCTGCCCACATCAACTAGCAGGTAG





Hsl007d07
Chr12
58000080
GTTTCCTTCATTCCATGTTCC
CCATTCTTAGTAACCTATACC
CTTCTCCCAATTCCCATGG
GTTTCCTTCATTCCATGTTCCAAGTAATGCCATTCTTAGTAACCTA








TACCCAGGTTTCTGTCTCTGTTCCATGGGCTGCTGGGTTGGGGG








CCATGGGAATTGGGAGAAG





Hsl007d08
Chr12
58000698
CAAAGTGACTGTGTCCAAGC
CTTCCTGAGCAAAGAGACC
CATAGATGTCAGAAGTCTCG
CAAAGTGACTGTGTCCAAGCCCGTGTGGGACTTCCTGAGCAAAG








AGACCCCAGCCCGGCTGGCCGGGCTTCGGGAGGAGGACCGTGT








GTCCATCCTCATAGATGGCGAGACTTCTGACATCTATG





Hsl007d09
Chr12
58001335
CCCAGCTATGAGAAGTACG
CACCATTGTCATCCAGTACG
GCTTGGGGAAAGCCAAAGG
CCCAGCTATGAGAAGTACGGCACCATTGTCATCCAGTACGTCTTC








CCGCCCGGTGTCCAGGGGGTAAGAAGACCATGGCCTGCCCTTA








CCCTTTGGCTTTCCCCAAGC





Hsl007d10
Chr12
58001802
GAGTAGTCAAGGCCTATAGG
CTGGACAAAGAGTAATGTGC
CCACTGTCTAACTTGTTCC
GAGTAGTCAAGGCCTATAGGTGTCTTCCTGCTGGACAAAGAGTA








ATGTGCAATTCTGGCTGCAGAGGGGTGAAGAAGCTGCACAGAAG








AGTGATGGAAAATGGAACAAGTTAGACAGTGG





Hsl007d11
Chr12
58002815
GTTCAAACAGCTAACAACCC
CTTTGCTCCCAGGTTTGGG
CTTCAGTCATCTGTGATACC
GTTCAAACAGCTAACAACCCTCACCCTCATTTCTCTTTGCTCCCA








GGTTTGGGTACCCAGACCCCACCTACCTGACCCGGGTGCAAGA








GGAGCTGAGAGCGAAGGGTATCACAGATGACTGAAG





Hsl007d12
Chr12
58003132
CACTCCCTTCTGGCAGAGG
CTCCAAGGCTCTGTTCTCC
GTGGAGCACAGCACATACC
CACTCCCTTCTGGCAGAGGCCGACCTCCAAGGCTCTGTTCTCCC








CTCCCCGTGTACATATACTCCCGGTTTCCCTGCCCCTCCATTGCC








CTTGGCTTTTTCTGGTATGTGCTGTGCTCCAC





Hsl007e01
Chr13
21000889
CAATGTCTCCTAACAGTTGG
GTCTGAAGTAAAGCTCAACG
CTTGATTTGTCAGGGTGGG
CAATGTCTCCTAACAGTTGGCAGACATGTCTGAAGTAAAGCTCAA








CGATGAAGTTCTGGAATCTCAGGGCCCCATCCAGATGCCCCAGA








CCACACCCACCCTGACAAATCAAG





Hsl007e02
Chr13
21001057
GGATGACATCATTCCGAAGG
GCAGAACCCAAGGTCAGC
GGGAATGAATCTGCAACCC
GGATGACATCATTCCGAAGGACAGGCAGAACCCAAGGTCAGCAA








TTTCCGAAGCTCATCACCACCAACTCACACCAGCAGGCTGAGAA








CCTGCCGAGGGTTGCAGATTCATTCCC





Hsl007e03
Chr13
21001506
CACTCCCTTGGCTATCCG
CCATTCTACCCCACGAAGG
CATCCTGGGCTATGAGACG
CACTCCCTTGGCTATCCGGGTGTCCATTCTACCCCACGAAGGTC








TAAGGGCTTACAGAGCTGCAAGGGAACAGAGAGAGAATGGGTGA








TGACAGGGGAGCGTCTCATAGCCCAGGATG





Hsl007e04
Chr13
21003103
GCTGTCAAACTTCAACTTGC
GAGGATCCTGAAACAGAAGC
GTGAATGGAATGAGCATTGG
GCTGTCAAACTTCAACTTGCTTTATGAGCCCAGAGGATCCTGAAA








CAGAAGCGCCCACACCAGTGAGTCCTAGAGGAGCAGTGAGTCCT








AGTTGCCCCCCGACCAATGCTCATTCCATTCAC





Hsl007e05
Chr13
21004004
GCAAGGGTCAAACTTCAACC
CTACTGGAATGCTGGCACG
GCTGACCTTGACCATCACC
GCAAGGGTCAAACTTCAACCTGCTACTGGAATGCTGGCACGCTG








GTTGTGACCTTGCTCCTGAAGTAGCTGGCCAACGGAGGTGCTGC








CACTGAGCGGTGATGGTCAAGGTCAGC





Hsl007e06
Chr13
21004702
CTCCTCCAGCAGCAAAAGG
CACCAGAGTCCTCCATGG
GAAGGGTTTGGGATTCTGG
CTCCTCCAGCAGCAAAAGGAAACACCAGAGTCCTCCATGGCTCT








TGCAATGGAGAGTTCTTTGTGTACACCTCCCACCCGATCCCCTTA








CACCAGAATCCCAAACCCTTC





Hsl007e07
Chr13
107000502
CCATACTTTAGATAGGTTACC
CCACAAAAGAGACCATAGGG
GAAGCTGTCAAATGACTAATG
CCATACTTTAGATAGGTTACCTATATTGTTACTGCCACAAAAGAGA







C
CCATAGGGCTCATAGCAACAGAGGCAGAATAAACGCCTCAGTGA








GATTCCAAGAGCATTAGTCATTTGACAGCTTC





Hsl007e08
Chr13
107001062
CCAGAGACTAAGTCAGAAGC
CTGTAGCATAGATCATGGG
GCGAATGCAGAGAAACAGC
CCAGAGACTAAGTCAGAAGCATTTTAGTTTAAATACTGTAGCATA








GATCATGGGACATAACCCAGGCATGGAATATATATACTTCAAAAC








TATCCCTGCTGTTTCTCTGCATTCGC





Hsl007e09
Chr13
107002082
GTGCAAAGCAAGCATCAGG
CTTTGTTGGCTTTCCAATTCG
GGCATTGCAGATATGTGCC
GTGCAAAGCAAGCATCAGGGTTGCCTTTGTTGGCTTTCCAATTCG








TTGCCAGCAGAAGCCCATGTGATAAGAACTTTTTGATTAAGCTCT








AAATCTTTGGCACATATCTGCAATGCC





Hsl007e10
Chr13
107002701
GTATCAAAGGCAGTGGAAGC
CGCTCCCTTCCTATGATCG
CAAGCACTGTTTGTTCAAGG
GTATCAAAGGCAGTGGAAGCTGGGCAACGCTCCCTTCCTATGAT








CGGTGTGTGAGCCCTGACTTAATGAGCTCCTACTAGAGGTGCTA








CCTTGAACAAACAGTGCTTG





Hsl007e11
Chr13
107003344
CATTCTGCAACTGCTTTTCC
CTCACCACAAACCTCATGG
GGAAACAACAGGATCATAGG
CATTCTGCAACTGCTTTTCCTAGCTCACCACAAACCTCATGGTTG








TATCTCTTTGTCTTTTGGACTCGGATTCTTCAAGCACTCGAATCCT








ATGATCCTGTTGTTTCC





Hsl007e12
Chr13
107003766
GTGTTTGTAGGGTCCCACG
GCAGAGCAGAAATCACTACC
GGAGATTGCTAATGATTTGC
GTGTTTGTAGGGTCCCACGTAAGCAGAGCAGAAATCACTACCGC








TGATCAAGGAGAGATGAACAGCATCACTAAACAGTGTTCAGAGA








CTTAGCAAATCATTAGCAATCTCC





Hsl007f01
Chr14
30000501
GGAACATCTCTGCATACAGG
CTTCCACCTCATGACTAGC
GAGACAGTGACCAGATCGG
GGAACATCTCTGCATACAGGTGTTAAAAGAAGCTTCCACCTCATG








ACTAGCATAAAACTTAAACCAATGGTTGTTATTCAGCTGAAGACA








GTATCAGTGTAAAGTGCCACCGATCTGGTCACTGTCTC





Hsl007f02
Chr14
30001001
CATTCCCTAACCCCACAGC
CAAAGCTTTCCTGTACACC
CACCTCTCAGTGGATAGGC
CATTCCCTAACCCCACAGCTCAAAGCTTTCCTGTACACCTGCTCT








ACTCAGCTCATCAATTTTCTGTGAGCCAGTTAAGTTCCTTTAAGC








CTATCCACTGAGAGGTG





Hsl007f03
Chr14
39001001
GTAGAAGCTTCTTTTCTTAGC
CAACACAGCCTGCATCTCC
GACCTCAAGTCATGGTAGG
GTAGAAGCTTCTTTTCTTAGCCAAAGAAACAACACAGCCTGCATC








TCCAGTGTAATGCCTTGACCAAACATGGAAATAGCAATGATAGGG








AATCAGTGCCTACCATGACTTGAGGTC





Hsl007f04
Chr14
39002501
CTAGAAGAGAAACTACAAGC
CTCAAAGCTGGGGTAACG
GGTTTGAAGAACTTACCAAGC
CTAGAAGAGAAACTACAAGCTGCTTAATCTCAAAGCTGGGGTAAC








GTAAGTAAAGTGCATTCAGGTCGAAGCCTGGAGGAGAGATGACC








TGAAGCTTGGTAAGTTCTTCAAACC





Hsl007f05
Chr14
39003001
GGGTACAATGAACTGTAATGG
GAGATACTCCTGAGATGGC
CAGACATTACTAAAGAACGC
GGGTACAATGAACTGTAATGGTGAGATACTCCTGAGATGGCAGC








CTTCAGAAAAGACTTTTTGACACATAAAGCTTGTCGATACTGACC








CTTGTTTGTAAGCGTTCTTTAGTAATGTCTG





Hsl007f06
Chr14
39004501
CAAGGATGCAACACTGAGG
GCTCCCAACAGGCATTACC
CTTCAGAATTCTTCAACATGG
CAAGGATGCAACACTGAGGTGGGGCTCCCAACAGGCATTACCCC








AGCAAATGAGGCCAAAGACCACAGCTAAAGTGATCTTAACCATGT








TGAAGAATTCTGAAG





Hsl007f07
Chr14
82002001
CTACCCTTTCTCCAACTGC
CTTGCTTCTTTCACTTAGCC
GGTTGGAGAAGTGTGATCC
CTACCCTTTCTCCAACTGCCCTTGCTTCTTTCACTTAGCCATAACT








CTGGCATCCTTCCCAATTTCATTCACATTTCGTCTTGGATCACACT








TCTCCAACC





Hsl007f08
Chr14
82002501
GAGCTGCTAGAGCTTTTGC
CAGCAATGAGTAGCTGACG
GAACCACTTTGGAGACTTGG
GAGCTGCTAGAGCTTTTGCCTTTAGCCAGCAATGAGTAGCTGAC








GTGCTCTGAGAATTCTCATAGGACCTGACTTCCTGGGGAAGTTC








CAAGTCTCCAAAGTGGTTC





Hsl007f09
Chr14
82003001
GAACCTGAACGTGTTGAGG
CAACTTGCTTTTCACTTAAGG
CTAGAGTTGGTGACAATTGC
GAACCTGAACGTGTTGAGGACATAAATCCAACTTGCTTTTCACTT








AAGGATGGTGAGACAACCTCCAGAGACTTTTCCTGAGAATGGGG








CAATTGTCACCAACTCTAG





Hsl007f10
Chr14
82003501
CAGATCATAGATTGTGGAGG
GATCTACCTAATGTTTGAAGC
GAGCAAATGTCACCTCACG
CAGATCATAGATTGTGGAGGAGTATGTTTGATCTACCTAATGTTT








GAAGCTGATAGAAGATGAAAGGGGGGAGGGAGCCTCAGGCTGT








TTACCAAGTTTCATCGTGAGGTGACATTTGCTC





Hsl007f11
Chr14
96001879
CTGGAGTAGAGTCTGGGC
GGTGTAGTTGATTTCACTGG
GAAGTGAGGATAAGTGAACC
CTGGAGTAGAGTCTGGGCTGAGGGTGTAGTTGATTTCACTGGGT








CTTGAGGATCTGGGGCTCTGTACTGTTGCCAACTTGAGCAGTAG








GTAAAGTCCTAAAGGTTCACTTATCCTCACTTC





Hsl007f12
Chr14
96003169
GGGTGGGACCTAGAAAGC
GAGTTGAGGAGTCGAGAGG
GTTGACAAGGAAGACAAAAGG
GGGTGGGACCTAGAAAGCATGTTGAGTTGAGGAGTCGAGAGGG








CAGGTTCAAATTACCACGTATATGTAATATTACCATGTGTTATTCT








CATGACCCTTTTGTCTTCCTTGTCAAC





Hsl007g01
Chr15
61000243
CTAACTGTCACCTCCTTGG
CTGAGGCTTAGAGTTTAGGG
CTCCTCTATTGCCAGAATGC
CTAACTGTCACCTCCTTGGACTGAGGCTTAGAGTTTAGGGTTTTC








AGGATAGAGAGCTTATCTGTTAGGTCCTTTGAACCGCTCCCTAGC








ATTCTGGCAATAGAGGAG





Hsl007g02
Chr15
61000843
CATAGAAATCCTAACATCTTCC
CCCAAGCCTTTTCAGTTCC
GAATACCAAACAGACTTAGC
CATAGAAATCCTAACATCTTCCCCTCCCTCCCAAGCCTTTTCAGT








TCCCTACACTTTCCCCCCAACCCTGTTCCCAGGGTATAGCGGCA








ATAGAGCAGCTAAGTCTGTTTGGTATTC





Hsl007g03
Chr15
61001150
CAAGGCCTTGATGTAGTGC
CTAGCAAAGAATACGTGAGC
GTTTCCTGAAGGCCTCTGG
CAAGGCCTTGATGTAGTGCCTGCATAGCTAGCAAAGAATACGTG








AGCAGCTAGTCATTCCTATCCTAGGGAAGCTCCTGAGCCCATGA








GCATGGGGAAAATCCCAGAGGCCTTCAGGAAAC





Hsl007g04
Chr15
61002774
GTAACCCGTCTAAGATGTGG
GGATATGTTCAAGTCTCAACC
GCATGCCAGGTGAAGGCC
GTAACCCGTCTAAGATGTGGTGCAGGATATGTTCAAGTCTCAACC








CAGGCAAGAGCTCTGTGATGAGAAGTTGACTATTAATGGCTGGG








TGGCCTTCACCTGGCATGC





Hsl007g05
Chr15
61003364
CCCTGCTTTGAGTAACTCC
GTCTCCGTGCCCTCAAGG
CAGTTTAGAAGTAGGAGTGC
CCCTGCTTTGAGTAACTCCCAACACAGTCTCCGTGCCCTCAAGG








CTATGTGTATTTCTCACTTTCCCTGGAACTAGTCACTCATGGACA








CTCTGCACTCCTACTTCTAAACTG





Hsl007g06
Chr15
61003869
CTATCCTTCAGTTTTCTAACC
CTGTCTCTTTTGGTCCTACC
CTGGAGGTCCAATCAAAGG
CTATCCTTCAGTTTTCTAACCTTCTGTCTCTTTTGGTCCTACCTTC








AGCTCAAGGGCTTAAGAAAGAAGATATTTCTTTTGGGGAAGATGA








TTTAACCTTTGATTGGACCTCCAG





Hsl007g07
Chr15
61004786
GATAGGACCCAGTGTATTGC
GCATTACATGACGGACTGG
GTGCAGTTTGCAAGAAAGGC
GATAGGACCCAGTGTATTGCAAGGCATTACATGACGGACTGGAC








CCAATTCAAGCTCTGGTACTTGTTCCCGAGGCCAGAAGACAAGC








CTTTCTTGCAAACTGCAC





Hsl007g08
Chr15
93000191
CTAAGACGAAGTCCTCAGC
CTCCAATACTGCAGAGATGG
CGGCTGTCCTTTCTTTGGG
CTAAGACGAAGTCCTCAGCTCTCCAATACTGCAGAGATGGTGTCT








CATTCTGAGATATCCTGCAGCACACCAGAGGCCTCAAGAGTGTT








CCCAAAGAAAGGACAGCCG





Hsl007g09
Chr15
93000752
GTGCACTGTCAATACAACG
GGATGCACCCAGCTAACC
CCTTTCCTTAGGATAACAGC
GTGCACTGTCAATACAACGTCCCGGATGCACCCAGCTAACCTCA








TTTGGGAAGGCAAAATTAATTAGTTTGTGTTTTAACACCCAGCTGT








TATCCTAAGGAAAGG





Hsl007g10
Chr15
93001078
GAGCTCTGGATTCATTCCG
CCTCATTTGCTGTTAACACC
GGACAGGAATAGAAATGCC
GAGCTCTGGATTCATTCCGGAGCCTCATTTGCTGTTAACACCTTT








TCCAGTTAGCAATTCTGGGTGAAAAGCCTGGCCCCAGATCTGAG








AGGTTGGGCATTTCTATTCCTGTCC





Hsl007g11
Chr15
93001829
GCAGTCATAGTTCTTGAGG
CCTCAGCACAGAGGCAGC
CCAGTCTTATGCATTGTGC
GCAGTCATAGTTCTTGAGGCCCTCAGCACAGAGGCAGCAGGACC








AACGACCTTCCCAGGAGCCCACAGATCAGCGGGAAAGGCAGGT








GTGCACAATGCATAAGACTGG





Hsl007g12
Chr15
93002103
GCTGATGGTAATCATCTGG
GTGGTTAACAGTCTGACTGG
GAAACTAAGCACGTGCATCC
GCTGATGGTAATCATCTGGAGGTGGTTAACAGTCTGACTGGGGA








GATGACAGTAGAACAAAGGCAATATTTCCAGGAAGACAGGATGC








ACGTGCTTAGTTTC





Hsl007h01
Chr16
52000016
CATCTGTCAGCAAACTGTTCC
GGCAGACCCAATTCTTAGC
CAGTCTTTGGTAGACGATGG
CATCTGTCAGCAAACTGTTCCAGGCAGACCCAATTCTTAGCACCA








CAATAAAATGAAGGACATCAGGATAATCCATCAAACAAAAGCAGC








TGGGAGCACCATCGTCTACCAAAGACTG





Hsl007h02
Chr16
52000747
CTATGGGTATGATATGTTCGG
CCTACAGCAATACTTTGTCC
GTAGCCACAGGTGGCACC
CTATGGGTATGATATGTTCGGCCCTACAGCAATACTTTGTCCTCC








TACATTATTTAAGCAGAGCTCATTAAGGGACTGGACAACCAGATG








ACAGCCCAGGGTGCCACCTGTGGCTAC





Hsl007h03
Chr16
52002355
GTAGGGAACATGCAAATCCC
CTGTTCTGTTCTACATTCACC
CTTCCATTCTGTAGGGAGG
GTAGGGAACATGCAAATCCCTCTTCTGTTCTGTTCTACATTCACC








CCCCAGAGCATTCTGGATGCTTCTCAGAATTTCCAAATCCTATTC








ATCCCCTCCCTACAGAATGGAAG





Hsl007h04
Chr16
52002765
CAACCACTATGTCACAAAGC
CAAGAACAGAGCCCATGGC
GCTCATTTCCTGTAAACAGC
CAACCACTATGTCACAAAGCCCAAGAACAGAGCCCATGGCTGAC








TGAAGTCAGCAGTTGCAATCAGGATAATTCTGTAACTGAATAATG








CATGCTGGAATGCTGTTTACAGGAAATGAGC





Hsl007h05
Chr16
52003709
GTCTTCATCCATCAGACTGG
CCAGCTCCCCATGAAGGC
GGAGACTATGCATCTTTCC
GTCTTCATCCATCAGACTGGACCAGCTCCCCATGAAGGCTGAGA








AAATAGTCAAGTAAGAAAATAGGAGGGTAGCCAAGACCGGCTGC








CCTCTCTAGGAAAGATGCATAGTCTCC





Hsl007h06
Chr16
52004798
CACTCAATAGACTTTCAGGG
GCAATAGCTCAGGCAAACC
CTGGTCAGTGGGCAGCCG
CACTCAATAGACTTTCAGGGAAATGCAATAGCTCAGGCAAACCTT








GCTTACCTCAAACTTTTACTAAGCAAATAAACAGATTTTGAAAGTC








GGCTGCCCACTGACCAG





Hsl007h07
Chr16
79000135
GAGGCTATAGGTTAAGAGG
GCTCAGAAACAAATCATTTCC
GGGGTGTACAGTAAACGG
GAGGCTATAGGTTAAGAGGAGATAACAGACATGCTCAGAAACAA








ATCATTTCCTGATAGCTGTTTCAGATGGAACCAAATGGAAAACAG








TGCTTCTTTCGTTTACTGTACACCCC





Hsl007h08
Chr16
79000890
GTCTCCACTGGAAGAAGAGC
GCAGACTATTCAAATGCTTCC
CAGATGCATGACTATGGGG
GTCTCCACTGGAAGAAGAGCCTGTAGAATATGCAGACTATTCAAA








TGCTTCCTTGGTCCATTGTTGTCCTTTCTTTTCTCTTCTAGAACT








TTCCCCATAGTCATGCATCTG





Hsl007h09
Chr16
79001030
CCTGTTTTCCCAAGTTTACC
CTCTGAGAAGCCCATCAGC
GGCTAGATTCATCCACTTGC
CCTGTTTTCCCAAGTTTACCTGCCTCTCTGAGAAGCCCATCAGCC








CTGAGAGATACCTGGAAGGAAAGAGGAAAATGCGTGATTCAAAT








CATGTTGCAAGTGGATGAATCTAGCC





Hsl007h10
Chr16
79001583
GGTGTTAGGTTCCCACAGG
GAAGGATCACCATGAACGG
CAAAGATTTGGAACTCTGTGC
GGTGTTAGGTTCCCACAGGATGAAGGATCACCATGAACGGTCAG








GACCTGACTTAGGAGGACTCAGAAGCTGGAGACTGCAGAGGATG








GCACAGAGTTCCAAATCTTTG





Hsl007h11
Chr16
79002130
CAAGTGAATGAGTGAATGGG
GACTATCCAGAAACTGTGC
GCTCAGAGCACATGGTTCC
CAAGTGAATGAGTGAATGGGCGATTTCCAGACTATCCAGAAACT








GTGCCCCATAGTCCTACCCGTAGGAATCCAACAGGGAACTGTCA








CCACCGACCCGAGGCAGGAACCATGTGCTCTGAGC





Hsl007h12
Chr16
79003012
GAGCAGTCAGGGGACTCC
CTGTGTCTGGTCTTATGGG
CTTTGTCCCCTGAGGTAGC
GAGCAGTCAGGGGACTCCCTGGCTGTTTCTGTGTCTGGTCTTAT








GGGTCTGGGCACTGAATTCAGTCACAAACCCTAGCATGCTCCTTT








GCTACCTCAGGGGACAAAG





Hsl008a01
Chr17
4003001
CCAGACCAAGTGACAGTGG
GACTGCCAGGAACGTTAGC
CCACTTTTGGACAAGTGCC
CCAGACCAAGTGACAGTGGTGACTGCCAGGAACGTTAGCCCCCT








GAAGTATCAGCGTTTGAGTTCTCTGGGCATTCTGTGGGCCCTGC








AGTGGCACTTGTCCAAAAGTGG





Hsl008a02
Chr17
4003501
CTGGCCATGAGTACTTTCC
CTTGTCTTGTCCCTTAAGGG
CAGCCATCACTATCTATTGC
CTGGCCATGAGTACTTTCCTCTTGTCTTGTCCCTTAAGGGTTACT








TTTTGCAGTGCAGCAAGAGAGACCGACATCAACCCTGAGTTACA








AGCAATAGATAGTGATGGCTG





Hsl008a03
Chr17
5000001
CTCAGGTTTTGGAATGAAGC
GACCTGCCTGGGTGAACC
CATGTGATCGCCAGAATCG
CTCAGGTTTTGGAATGAAGCTATGTCAAAAAGACCTGCCTGGGTG








AACCCCTGCAAATGGAGGTCAGCTGGACCTCAGTAAAAGCCCAG








TGGGAAGGAGCGGGGACGATTCTGGCGATCACATG





Hsl008a04
Chr17
5000501
CACCATGTACTCTTCACAGG
GTGGACCCAACTCTGTTGG
CTCTTACCTCTCGGATACC
CACCATGTACTCTTCACAGGCAGGTGTCTTCTGGTGGACCCAAC








TCTGTTGGTACTTGTCGTCTCCAAAAAGTCCCCAAATGCGCTAGA








GGCCAGCCAGCCCGGTATCCGAGAGGTAAGAG





Hsl008a05
Chr17
5002001
GTGGAGTTGATCATTTGAGG
CTTTGGCTAAGAGGGACGG
CCTTTCTTGATGATTCTCTGG
GTGGAGTTGATCATTTGAGGCCTTTGGCTAAGAGGGACGGTGGT








TATGTGCTGGGAGTGGGCAGAGGTCTGGGAGGCTTTCTGGCAG








ATTATCCAGAGAATCATCAAGAAAGG





Hsl008a06
Chr17
5002501
CACTAGTATGTAGAGTGTGG
CTTGAGATGGAATTCTCACC
GAACTGGGCTGGTCTTTCC
CACTAGTATGTAGAGTGTGGGAAAGCCTTGAGATGGAATTCTCAC








CTTCGAGTTCATCAGGAAATTCACACTGGAGAGGACCTTTGAATG








CCAGTGTGGGAAAGACCAGCCCAGTTC





Hsl008a07
Chr17
47001643
GTGTTTTGAAGCTAAGATGCG
GCCCTCCCAGAATCTTAGG
CTACTGTTTCTGTGATCAACC
GTGTTTTGAAGCTAAGATGCGTTCAGCCCTCCCAGAATCTTAGGG








ATTATATGAATCCTCTATTTAAATTCTGTTCCCAGCCCTGAGGGTT








GATCACAGAAACAGTAG





Hsl008a08
Chr17
47002246
GACTAATGTAAACCACCTGG
GTAAGAGAATGAGAATTCTCC
CGAGTATCCCATTTCTAAGC
GACTAATGTAAACCACCTGGTTGGTAAGAGAATGAGAATTCTCCT








GTCCTGGAGAATCAGTTCTTGGGTGTTTGGATCATCTTACTGGTG








GTCTTGCTTAGAAATGGGATACTCG





Hsl008a09
Chr17
47002726
CGTACTATGTCTGTTCACC
CCAACACCAACAGCGTAGG
GGAAAGTCCTTGAAAGAAGG
CGTACTATGTCTGTTCACCCACCCCAACACCAACAGCGTAGGAG








GAGATGACTTATGCCCTCCAGTGCDACTTATAAATGGTAGTTTTC








CCTTCCTTCTTTCAAGGACTTTCC





Hsl008a10
Chr17
47003505
GGATGGGAATGGAGTGACG
CCTGGGGAGGAGTACAGG
GGTAATCTGCTTTTCTAAGG
GGATGGGAATGGAGTGACGAGTCCCTGGGGAGGAGTACAGGTG








CTTATCTGAAAGTCAGAACTCTTGAATTCTAGACCTGCTTCTGAC








CTTAGAAAAGCAGATTACC





Hsl008a11
Chr17
47004235
GAGCTTTCATTTCACATGGG
CCGAAGTTGCTTTCTCTAGG
CTCCAAAAGGGTCCTGTGG
GAGCTTTCATTTCACATGGGCCCGAAGTTGCTTTCTCTAGGATCA








GCCACCCAGACTTGAATCTTCCATCCCCTTGTCTCCTTTCCCCAC








AGGACCCTTTTGGAG





Hsl008a12
Chr17
47004713
CCATTCATCCCGTATCAGG
GCCAAGGTACCTTTACAGG
CCACTTATCCCTAAGGAGC
CCATTCATCCCGTATCAGGGGCCAAGGTACCTTTACAGGAGCAC








CTAGAGCGAGGGCCTTTGGCAAAAACAAAACAACCAACACACCT








CTCCACAGGGCCAGCTCCTTAGGGATAAGTGG





Hsl008b01
Chr18
8000599
CTGGGAATAGGATCCTTAGG
CGGACATTAGTCTAAAGTGG
GTGTGAAATGGATGAGGCG
CTGGGAATAGGATCCTTAGGAATAAATATTTATGTTCACGGACAT








TAGTCTAAAGTGGCATCTTTAAACCTACCTTTTTTGTGTGTGATAG








AAACATAGAGTTACACCTTATGGTGACCGCCTCATCCATTTCACA








C





Hsl008b02
Chr18
8001206
CAAGTCTCTGCTGAGAAGG
CACATTTCTTTCCTGTGTCC
CACTTACAGGCCTAACTAGG
CAAGTCTCTGCTGAGAAGGGCTGGCACATTTCTTTCCTGTGTCCT








CTGTTAGGGGATAGCGATAGACTCCTCGTAAACTCCAGGATGGA








GCCTAGTTAGGCCTGTAAGTG





Hsl008b03
Chr18
8001633
GTGAAGTGATTCCAAGAATCC
CTGTATGGCTCCCAAAACC
CCAACTGGCTGCTAGAGC
GTGAAGTGATTCCAAGAATCCAGTAGTTAAGTCTGTATGGCTCCC








AAAACCCATGTCCCCTTCTCTGCCTAATCTTCCTTAATAAAAAGCC








AGTTGATAGTTTTTCTTTGCTGAGCTCTAGGAGCCAGTTGG





Hsl008b04
Chr18
8002273
GAAGCAAATGTTCAGAAGGG
GAAGGTCCTGCCATCAGG
GAGCTAGCATGCATTCAGG
GAAGCAAATGTTCAGAAGGGAATGAAGGTCCTGCCATCAGGACA








AGACATTTGGGTAGTAGAGCACATAATTCCTTACCAGGTATGATT








TGACCTGAATGCATGCTAGCTC





Hsl008b05
Chr18
8002776
CAGAGGTGGAGTAAAGTGG
GAACATTTCTCCGTGATTGC
CTCAAGTTGTCAAATCAGTGG
CAGAGGTGGAGTAAAGTGGATTTCACAGAACATTTCTCCGTGATT








GCAATTCTCAGGCTGAGATGGACAAGAAATGCTGATACATCTCTG








CCCACTGATTTGACAACTTGAG





Hsl008b06
Chr18
8003814
CTGCTCTCCTAGTGTTGCC
GGCCTTCTGTCTGTGACC
GAACTTGGTGCTTCTATGGC
CTGCTCTCCTAGTGTTGCCTCTTGGCCTTCTGTCTGTGACCATTC








TACTTAAAGAAACTTAGGGAAGAAGGAAGATAAATATTCGCTTTC








CTTTTCTTGGCCATAGAAGCACCAAGTTC





Hsl008b07
Chr18
59000111
GTCGATGAGTGAGGTTTCC
CATGCCATCTTCCCCTACC
GGAAATGAGTACCAACTCG
GTCGATGAGTGAGGTTTCCCTCACACATGCCATCTTCCCCTACCT








CTCCTCTTGAAAACAATGTCTTTTGCACCCTCAAGGTCAAGGTTA








AACCCGAGTTGGTACTCATTTCC





Hsl008b08
Chr18
59001708
CAAGGAAAGCTCTGAATTGC
GCTTGTTGTAGTTACTCTGG
CTCGGTAACGTTCTCTTTGC
CAAGGAAAGCTCTGAATTGCGCTCGCTGTTTGGTTTTTGCTTGTT








GTAGTTACTCTGGGGGAAGAGCCGGGGGCAAGGGGGTCAAATG








GGGCTAAAGTTTCAGATTTGCAAAGAGAACGTTACCGAG





Hsl008b09
Chr18
59002384
GAACCCTGAAGGCATAGCC
GAGTTGACCCAGCGTTTCC
GCATGTCCAACGAGACTGC
GAACCCTGAAGGCATAGCCATCTTGAGAGTTGACCCAGCGTTTC








CCTTTCATTTATTTATATAACCTGGGAAAATCTTTTCCCTTTAGTGT








CACCCTTGCAGTCTCGTTGGACATGC





Hsl008b10
Chr18
59002822
CTCTGGCCATTGACTTTGG
GTGACCTTTCTTTTCAGTGC
CATCTCACGACAACTGTCC
CTCTGGCCATTGACTTTGGCGTGACCTTTCTTTTCAGTGCTTCTG








ATTTTCGCTCTCTGCAGATACTCAAGTAACTGTGCCTTTCTAACA








GGACAGTTGTCGTGAGATG





Hsl008b11
Chr18
59003252
CCAGTTCTCACCGGAAAGG
GTTGTGACTGTAGTAAGTGC
CGATTCCAGTCTCTGAACC
CCAGTTCTCACCGGAAAGGCGTTGTGACTGTAGTAAGTGCTGAG








GGTTGAGAGGAGAGATTGAGAGTTGTTAGGGGAACTGTTACACA








GGGTTCAGAGACTGGAATCG





Hsl008b12
Chr18
59004131
GCATCCAGGGCTGAAACC
GCAGCTGATGCCGAGAGG
CGTGTTTACAGCAATCTTTGG
GCATCCAGGGCTGAAACCAAGGCAGCTGATGCCGAGAGGAGCC








AAAGGGCAGTTCTTCTTAGTTTAGAAACAGCAAGACAGCCTCTGC








CAAAGATTGCTGTAAACACG





Hsl008c01
Chr19
11000001
GCCAATGCATTTCCAAGCC
GGATCCAACCGTGGACCC
CTGCATTCGTCTTCATTCC
GCCAATGCATTTCCAAGCCCGGATCCAACCGTGGACCCTGGCCT








TTTGGGCCAGCAGAAGAGGTGGCTGTTTTTTCTCATGAAATATTT








TTGAAGGAATGAAGACGAATGCAG





Hsl008c02
Chr19
11000501
CTTGCCCATGGAATGAAGC
CCAATCCCCTCCCCAGGG
GTTACAGGTTAGCTTTTCAGG
CTTGCCCATGGAATGAAGCCCCCCATCCAATCCCCTCCCCAGGG








AACAGCTTTATACTAACTCTGGTGGTCGGCTTTTGGAGGGGCCAT








AAATGGCCTGAAAAGCTAACCTGTAAC





Hsl008c03
Chr19
11002501
GATCCAGGTGTATCTCTGC
GCTTGTAGCATACATAAGGC
CATCAGAACTATGTCTGAGC
GATCCAGGTGTATCTCTGCAAGTAGAGCTTGTAGCATACATAAGG








CCCTGCAAAGGGATTTCTGGGCCGGAAGTTTTTGATCAGTTGCT








CAGACATAGTTCTGATG





Hsl008c04
Chr19
11003001
GACGACATCGGAGGATCC
CAGGTTACGGCAGGAGAGG
CATCAGCAACAGATCAATGC
GACGACATCGGAGGATCCGACTCAGGTTACGGCAGGAGAGGGA








GGCCAGGCCGGGTTAGGGTTCTGGGGTTTGGGATTCTCTTCCGA








GGCTGGCATTGATCTGTTGCTGATG





Hsl008c05
Chr19
16003501
GCCTAACATGGCGTGTAGG
GTCAGGGTTCCAGCATGC
CATTCTGTAGAATGCTGAGC
GCCTAACATGGCGTGTAGGAGCTATGTCAGGGTTCCAGCATGCC








TTGACATGCCTCCTACACGATCCAACATGTTCCGCAACCCCTGAG








CACAGCTCAGCATTCTACAGAATG





Hsl008c06
Chr19
16004001
CCAGACATGAGCAAACAGC
GTTAGACAGGTGGAAGTCC
GAACACGTGACCGATGTGC
CCAGACATGAGCAAACAGCAACAGAGGTTAGACAGGTGGAAGTC








CAGGGGCGATGGAGGCAATGGCATCTCCACCACAGCCCCTCCT








GTCTGCACATCGGTCACGTGTTC





Hsl008c07
Chr19
45002590
CTGTCTTTCCACCAAACTGG
CCATCAGGCTGTGATCAGG
GTGTTTGGTTGGGAAACAGG
CTGTCTTTCCACCAAACTGGGCACCATCAGGCTGTGATCAGGGT








TCCAATCACACAAAGACCCCAGCACCCTCTGTCTAAAACTCATCT








CCGGCCTCCTGTTTCCCAACCAAACAC





Hsl008c08
Chr19
48000001
GTTCTAGGGCTGACAGACC
CAGCAGACAGTGGAAACGG
GTATGTGTCTTCAAACTGCC
GTTCTAGGGCTGACAGACCGAGACTGTGGCAGCAGACAGTGGA








AACGGTGGCAAAAAGGGGGCAGATGAGGAGGAAGGGGAGAGAA








CACAACCTAAATCCGGCAGTTTGAAGACACATAC





Hsl008c09
Chr19
43002501
GATGCCCAGCTGCTGAGG
GCAACTGGTCAGTCTAAGG
CCTTTGTCGTGATCTGACG
GATGCCCAGCTGCTGAGGAGCAACTGGTCAGTCTAAGGACAGAG








AAGAGCTACTGGTCAACACAAATTCATCCTCATCTGGGAACTAAC








ACGTCAGATCACGACAAAGG





Hsl008c10
Chr19
58000001
CAGTTCCTCATGTACAGTCC
GGACAAAAGGAAACGTCAGC
GTTGATCATCCCTCCTGTGC
CAGTTCCTCATGTACAGTCCGTATGGACAAAAGGAAACGTCAGC








CAGGCTGCTGGAGCAGCCCCTTTGGTGCCTAAGTTTCCCTAGCC








GTCAGCACAGGAGGGATGATCAAC





Hsl008c11
Chr19
58003501
CCTTCATGCCTGCTTGGG
GTTGTGACTTCAGCCATACC
CTACTGGTATGATATGAATCC
CCTTCATGCCTGCTTGGGAAGTTGTGACTTCAGCCATACCGAGA








GATAGTTGGTGGGTGGAGCTCAGGGAGGTGTGAACTCAGGGAT








GGATTCATATCATACCAGTAG





Hsl008c12
Chr19
56308828
CAGGCATTGTATGAAGTTCC
GGATACAGCAGAAAACTGG
GGCACATGATACATTCAGC
CAGGCATTGTATGAAGTTCCTGGGATACAGCAGAAAACTGGAAG








AAATACGATGGAATTCTAGCATTGTAAAGACAGGGCTGAATGTAT








CATGTGCC





Hsl008d01
Chr2
30000161
CATGACCTTCTTAGAGACC
GGTCTCTTGAAATCATCACC
CTTCTTCCCTACAAACTAGC
CATGACCTTCTTAGAGACCAGGGTCTCTTGAAATCATCACCCAGC








CTACGAGTCACTGGCTGAGGTCACCTGACAGTGAGTCACTGGCA








GCTAGTTTGTAGGGAAGAAG





Hsl008d02
Chr2
30002357
CTGAGTCCGAATTCAAGCC
CTCTTCACCAGCAATACGG
GGTGACTTCTCTAAACATCC
CTGAGTCCGAATTCAAGCCAAGGCTCTCTCTTCACCAGCAATACG








GACTCCTGAATAGAGTCTGCATCATTCTCTCTGCAGAATGCTCGG








TGGATGTTTAGAGAAGTCACC





Hsl008d03
Chr2
30002837
GGCTTTGGGACAAGATTCC
CTTGGGAATGCTGAGAACC
GAGAGCACCTGTAGAGATCC
GGCTTTGGGACAAGATTCCTTGATCTTGGGAATGCTGAGAACCA








AATAACCAGCATCATTGTGGACCAAGCATCCCAGCCCCAAACAC








AGTGAGTATTGACTCTGGATCTCTACAGGTGCTCTC





Hsl008d04
Chr2
30003549
CGTTAGCACAACCCATGGC
GGGTAACAGATGCCACAGC
CTTCATCAACTGAAAAGATGC
CGTTAGCACAACCCATGGCGTTTCGGGGTAACAGATGCCACAGC








AAAAAGCCCATGCTGGTTAAGGAAGATGATACTGGCGAGAGTGT








CTCCAAATCTTTCTAGCATCTTTTCAGTTGATGAAG





Hsl008d05
Chr2
30004277
CCCATCCTCCTTGCATGG
CCTTGCATGTCACCAAAAGG
GTGTGCCTATTGCATTGGC
CCCATCCTCCTTGCATGGGCCTTCCATGTCACCAAAAGGCTCCC








CACCTCCAGGAAGGAGAGAGAACATGCCTGCAATCACACAGCCA








ATGCAATAGGCACAC





Hsl008d06
Chr2
30004655
GGCTGTCTTCTTTGTCTCC
GTCCTCTGCTAACCTGTCC
CAGTTCTTTCTGTCTAGAGG
GGCTGTCTTCTTTGTCTCCTGTCCTCTGCTAACCTGTCCTACGAC








ACAAAATAAACCTTCTCACAGCTTTTGGGTGTATGAACTGCCCAC








AGGGAGTTTCCTCTAGACAGAAAGAACTG





Hsl008d07
Chr2
205000501
GCAGTTAGGGAAGGTTCCC
CTGCTAGTCTGAAGACTCC
CAGTGAAACAGAGCAGTGC
GCAGTTAGGGAAGGTTCCCAGAGGCTGCTAGTCTGAAGACTCCT








GGGACCTCCTGATGTCTTTTAAGCCCACACATTGTGGCCCAGTG








ACTGATTTAGCACTGCTCTGTTTCACTG





Hsl008d08
Chr2
205001001
CAAGCCACAAACTGTAGGG
GTCGCAACAATACCACAAGG
CTGACTCCTGAACAATGTCC
CAAGCCACAAACTGTAGGGCAGTCGCAACAATACCACAAGGATA








AACTTAGGGCAAAATTCAGAAAAGAAATTGTGGTAACAGACTTGG








GACATTGTTCAGGAGTCAG





Hsl008d09
Chr2
205002001
GTGTGATTACTCACTAATCCC
CTCTCACTTTTGACCAGACC
CTTGAGTGGCTTTCCAACC
GTGTGATTACTCACTAATCCCTTTCCCCTCTCACTTTTGACCAGA








CCCATATGTTGAACTCCAGAATGACTTGTGGATGGAGGCTTGAAC








TTGGAGCATTTGGTTGGAAAGCCACTCAAG





Hsl008d10
Chr2
163291858
CTGTCATTGTAACGTTTCCC
CTGTCCTAAGGAATCCAACC
GATTGCTCACTGGCTGGCTTG
CTGTCATTGTAACGTTTCCCAATTTGCTGTCCTAAGGAATCCAAC







C
CATCCGATTTTGTCAGTCAGGTAAGGCCTTTCTACATTCCCAATC








GCATACCAAATGCAAGCCAGCCAGTGAGCAATC





Hsl008d11
Chr2
236000001
CTTGTGACTTACCCTTACGC
CTTTCTGTCTCATCTGAAGG
CTAGGAGAAGACATCCCTCG
CTTGTGACTTACCCTTACGCAACCTGGTGGGCACCCACTTTCTGT








CTCATCTGAAGGCTGACTGGCTCTGCCCCTCACAGGCGGGGGC








CAAGGACACCAGATCTCCCGAGGGATGTCTTCTCCTAG





Hsl008d12
Chr2
238335461
CAGGTTAGTAGTACCATGGC
GCTGTGTACTGCAAAGATGG
GCAAGCCTGAATGTATTTTGG
CAGGTTAGTAGTACCATGGCAACAGCTGTGTACTGCAAAGATGG







G
TGGAAGATAGTTTCCTAAAACATAAGGATCTTCTCTTTCCACATCC








TCTCTTTTCCCAAAATACATTCAGGCTTGC





Hsl008e01
Chr20
21000366
GTTCCGTCCGATTCTTCCC
GTGCTCAAGCCACAATACC
CATCTTGGAGATATCTACCC
GTTCCGTCCGATTCTTCCCTCATATTGTGCGTGCTCAAGCCACAA








TACCTAGAATCCTGAGCATTGTAAGTGTTTAGTAAACACCTGCTT








CCAAACAGTGGGTAGATATCTCCAAGATG





Hsl008e02
Chr20
21000532
CTGATTCTATGGGCAGCGC
GCGTTTGTTTGCTTGAAAGC
CGGAATTCAACATTCCAAGC
CTGATTCTATGGGCAGCGCCTGGCGTTTGTTTGCTTGAAAGCCC








TGACTGATGGGGTTAGACAATTATGACCTTGGTTCCTAAAGAGCA








AAGTGCTTGCTTGGAATGTTCAATTCCG





Hsl008e03
Chr20
21001220
CTCCAATACTGCACAATCCG
CACTCATTTGCTCCGTTGC
GTGCTTAGAGTTGCCTGGC
CTCCAATACTGCACAATCCGCCCTCACTCATTTGCTCCGTTGCCT








GTCGAAAGCACAGAGCGTAATTACTAAAGTTAAGAAAACATCCCT








GTAATTAGCCAGGCAACTCTAAGCAC





Hsl008e04
Chr20
21001521
CTTTCGTAGACAGCAGCC
CTGGGGAAACAGACACAAGC
CCCTAGGTTAACAGATGCC
CTTTCGTAGACAGCAGCCAGAATAAAGTCTAATATTCCGGCTGGG








GAAACAGACACAAGCAAACAGTGANNNNNNNNNNCCTGTTGATT








TTATTTTCCTTTGTGGGCATCTGTTAACCTAGGG





Hsl008e05
Chr20
21002551
CAGCTCCACAACTAGTAGG
GGGAAATGTAAAGTCTGAGG
CCTTGTCCAAAACTTGAACG
CAGCTCCACAACTAGTAGGTACATTGACTCAACATAGAGAAAACG








GGAAATGTAAAGTCTGAGGGTTGTGTGTTTGGGAGAGGTGGGGT








GGGGGTGTCTCATTTTTAAAATACACGTTCAAGTTTTGGACAAGG





Hsl008e06
Chr20
21003101
CAACCACATTGATGTGAGC
CATACATCTTCAGCCAAGGC
CTCACCTGGCATTAGATCC
CAACCACATTGATGTGAGCTCCTCATACATCTTCAGCCAAGGCAC








ACAGAAAAAGGAAATGCCTGACAAACAACCCTTCTGAGTGAAGAA








TGATGGGATCTAATGCCAGGTGAG





Hsl008e07
Chr20
58000746
CTGCAGCACCTGTCATGG
CTCTGTGTCACGTAGTAGC
CTTGACAATCCACTGTTTCC
CTGCAGCACCTGTCATGGGGGACTCGTGCTCTGTGTCACGTAGT








AGCTGCTCAATAATTCCTCCTGGAGGGGATTGCTGATGGAGTCC








TTGCTTTTCCCTGGAAACAGTGGATTGTCAAG





Hsl008e08
Chr20
58001127
CTTTGCTCAGACCAACACG
CTGAGTTGCCATGCATTCG
GGTACCCAGGCATATCTGG
CTTTGCTCAGACCAACACGTCTGAGTTGCCATGCATTCGAAGAGT








GGGTGCCATGGTTCCCAGCAGACATGTGGCTCAGGACTTGGCCA








GATATGCCTGGGTACC





Hsl008e09
Chr20
58001573
CAGCTCAGGATGGAAAAGG
GAGCTAGGAGAGGTACAGG
GAGGTTGAGTAACATGTTCC
CAGCTCAGGATGGAAAAGGCAAATTGGGAGCGGGGCCAGAGCT








AGGAGAGGTACAGGATGGAGAGAAGTTGCTGGGAAGGGAGGCC








GAGGTAAGGCCGGGCCGGTGAAAATGGGAACATGTTACTCAACC








TC





Hsl008e10
Chr20
58002128
CAGAGCAAGAGGGATGGG
CTGGTGCTGAGACTCTGG
GAAGCACAGTTTAGAAATGGC
CAGAGCAAGAGGGATGGGACTGAGTCCTGGTGCTGAGACTCTG








GGGAGGGACAGACTACTTTGTGATTACTCAAAAGGCGAGGAGGG








GTGATGAAATAAGCCATTTCTAAACTGTGCTTC





Hsl008e11
Chr20
58002880
GAGGGACCAAACTATGAAGG
CTGATGAGCCTTAGAATTGG
GAAAGGGCTCCTATAGATGC
GAGGGACCAAACTATGAAGGAATGCTGATGAGCCTTAGAATTGG








TTTCTGTCTGCGTCCCACTTCTTGCAAACCCCTAGTTATTAAACAC








TGTAATTCTTGCATCTATAGGAGCCCTTTC





Hsl008e12
Chr20
58004256
GAAGTGTCAACAGCATAGCC
GGAAGATTCTGGAGATACC
CTTCCACCATAACATTTGGC
GAAGTGTCAACAGCATAGCCCAGGAAGATTCTGGAGATACCTAA








ATTAAAGCAGCATGAGTGTAGGGGAGCCCCTGTTTCTCAAAGCC








GGGGGTGCCAAATGTTATGGTGGAAG





Hsl008f01
Chr21
38001523
GCATCCACACGTGATGTGC
CAAGCTTCTGAAGCTACGC
CTTAGGATGGAAACCATCGC
GCATCCACACGTGATGTGCGTCAAGCTTCTGAAGCTACGCTCCT








GAGGAAGGCTTTGTGCAGCTCAGACTTCCCCACCATCTGCTAAC








CATGCCCTGCGATGGTTTCCATCCTAAG





Hsl008f02
Chr21
38002847
CTAACCTATTGCCAGCTGC
GGTTACAATTCATCCCACCC
GACCATCTAACATCACAAGG
CTAACCTATTGCCAGCTGCACACAGGAGTTAGAAAAAGGTTACAA








TTCATCCCACCCGATTTGAGATTTTTCCAGTTAAAGACATGGCGA








GGTAGAAAGACCAAGTCCCTTGTGATGTTAGATGGTC





Hsl008f03
Chr21
38003592
GGACTGCAGCTAGTATGGC
CCCATAGCTATTGAAATGCC
GGATGGCTGTTGTTCATCC
GGACTGCAGCTAGTATGGCCCCCATAGCTATTGAAATGCCCGAG








ACACGTCAGTGTCTAAACATCTCTCAGACCACCCCTTCCACTTGG








ATGAACAACAGCCATCC





Hsl008f04
Chr21
40002740
CTTTGTTAAGCTCACTTTGC
GGAATTCAGAGCTCATAGGG
GTAGTGCTTCTCAGTTTAGC
CTTTGTTAAGCTCACTTTGCAACATAAGAGGAATTCAGACCTCAT








AGGGATGTGAGCTACATAGTTATTCACCATATACCCTCAGGAAGA








AGTAGAGCTAAACTGAGAAGCACTAC





Hsl008f05
Chr21
40003005
CAGGATGTGACCACTGGC
CATTCCTAATGTTTCAGGTGG
GTTGAAGGAATTGGAAGAGG
CAGGATGTGACCACTGGCTCATTCCTAATGTTTCAGGTGGGTAAC








AAATATTTGCTTTTTCCGGGGAGTTGACCACACACCCTCTTCCAA








TTCCTTCAAC





Hsl008f06
Chr21
40003784
CCACAGACAGTTCTAGAGG
GTGCTTGACTTTGGAAACCC
CTTGAGGAACGAGTTTCTGG
CCACAGACAGTTCTAGAGGGTGTGCTTGACTTTGGAAACCCAGT








TTAACTGGCTTCTGCTTGAATCATCACTCCATTAACATCATCATTC








CAGAAAGTCGTTGCTCAAG





Hsl008f07
Chr21
40302108
GAAGTTTCTGGGACACAAAG
GCTTTCTGGCTTTGTCAAGC
GGAAAACTTGGTAAAAGTGAC
GAAGTTTCTGGGACACAAAGGGCTTTCTGGCTTTGTCAAGCTGG








TCTTGAGAGATGAAACAGGCACCCCGCGCCATGTGCTAACAGTC








ACTTTTACCAAGTTTTCC





Hsl008f08
Chr21
40303890
GTCATTGCTGGAAATTGATTC
GAGTTTCAGAGCTTCTCTAG
GTGTCAGGATCCCTGAATC
GTCATTGCTGGAAATTGATTCATAGAGTTTCAGAGCTTCTCTAGA








AGGCCTCAGCCATGTCCTTAAAAGTTGCATAAAACTTTTGGCATA








TGAGTGATTCAGGGATCCTGACAC





Hsl008f09
Chr21
40304216
CTTCTTCTCTTCAAGGGTAG
CATGGTGGACGTGGATGC
GGACTCAGCACTCACAATG
CTTCTTCTCTTCAAGGGTAGACATGGTGGACGTGGATGCAGGAT








AGCAGGCATCAGGCAGATGTGAATGGCATGGAAAACCAGGCTCC








TGGAGACATTGTGAGTGCTGAGTCC





Hsl008f10
Chr21
40304979
CGTCAACACGGATTACATTC
GAAACCATGGATGCACACC
GATTCAGTGACACAGAATGG
CGTCAACACGGATTACATTCTGAAACCATGGATGCACACCTCACA








TTCCTGGAGTCATCTAACACTAGCATCAGCAGGTGGTCTTGACAT








GGTCCTGGACCCATTCTGTGTCACTGAATC





Hsl008f11
Chr21
44002659
CACCAGCCAGCATTCAGC
GCTTTGAGGTGGCGATCG
CTTCCTTTGTGAGTTGTGG
CACCAGCCAGCATTCAGCACAGCAGCTTTGAGGTGGCGATCGCT








ATTTCCCCAACTCAATGAACTAAAGTACTAGAAGAAAATCTCCCA








CAACTCACAAAGGAAG





Hsl008f12
Chr21
44003281
CTCCAGCCTGTCTGTAGG
CTACTCCTGGAAGCTCACC
CTGAGACGCACAGTATAGC
CTCCAGCCTGTCTGTAGGTAGGAAAAACTACTCCTGGAAGCTCA








CCTCAGTGAATGCACCTCAGAGTCCAAGAGCTGCCGCGAATACA








GGGCCTGGTGGCTGCTATACTGTGCGTCTCAG





Hsl008g01
Chr22
20000269
GTAAGCCCTGTGGTTCTGG
CGGTATCCATGGTCCAACC
CTGTAGCTTGCCAATCTGG
GTAAGCCCTGTGGTTCTGGCACGGTATCCATGGTCCAACCAGAG








GGCTGAGAGGTCTCACACTGGGGCATAAGCCTGGCCCAGGCCA








CACAGCCAGATTGGCAAGCTACAG





Hsl008g02
Chr22
20000673
GCTCAATGACAATGCTGTCC
GCAAAACCGAGTGTTCTCC
GGTCTGTGCCTCAATGTCC
GCTCAATGACAATGCTGTCCACTACAGCAAAACCGAGTGTTCTCC








TAGGCCTGCTGCCACCCTGGGCACATAGTGAGAACACGCCCACT








TCTGCTGTGGACATTGAGGCACAGACC





Hsl008g03
Chr22
20001252
GCTCTGGGTCATCTTCCC
CAGGCCAAGATATGAAGGC
GTCTTGGGTCACTCTGAGG
GCTCTGGGTCATCTTCCCGACCTGAAACAGGCCAAGATATGAAG








GCCCTGAGCCAGGAAAACCTACTAAGGGATCCGTGATCCCAAGT








CCCCTCAGAGTGACCCAAGAC





Hsl008g04
Chr22
20002510
CACCTCTGGAGGGAGTGC
GCAAACATGGGAGCCAAGC
GGGAGAACAAGTTCTGACC
CACCTCTGGAGGGAGTGCCAGAGCAAACATGGGAGCCAAGCAG








CCCAGATGTGGTGGGTGGGGAGACTCAAATTTAGCAGGATTGAG








GGTCAGAACTTGTTCTCCC





Hsl008g05
Chr22
20003050
GACCAGACCTCTAAACACC
CCAGATCCCAGAGTAAAGG
CACCTCTCCCGACCTTAGC
GACCAGACCTCTAAACACCGCCCAGATCCCAGAGTAAAGGCAGA








TAAGGCAGTAGTTAAGAAGTAGGAAGAAGTAAAGGCAGCTACCC








CAGAGAAGCTAAGGTCGGGAGAGGTG





Hsl008g06
Chr22
36001711
GCATACGAATTCCCAAATCC
GCAGAAAGGAAGAAGGTTCC
GTGGACACGTCCCAAATCC
GCATACGAATTCCCAAATCCTGGCGCAGAAAGGAAGAAGGTTCC








CCTTTAATGCGGTTGTCTGGTGCCACCGCACAGCCTGGTAAATA








AGTGTGCTAGGATTTGGGACGTGTCCAC





Hsl008g07
Chr22
48000357
GTTTGGAGGGATGGAAATGG
CTGGAGAAACTAGGAAGGC
CACATGGGTTACTCTTAGGG
GTTTGGAGGGATGGAAATGGAGCAGGAGGAGGCTGGAGAAACT








AGGAAGGCCCAGACCACACAGGCCTGCTGAGACACATTGCGGA








GTTTTGGCCTTTTCCCTAAGAGTAACCCATGTG





Hsl008g08
Chr22
48000513
CTGTGAGGATGATGGACAGG
CAGGGGACACGCATTAGC
CTCTGTTCGTGTGCTTCCC
CTGTGAGGATGATGGACAGGAGGGCAGCAGGGGACACGCATTA








GCTCCCCTGTCATCCCTCTGCCAGCACCTCCCAAGAGCAGTTTG








TGCTAGGTGTGGGAAGCACAGGAACAGAG





Hsl008g09
Chr22
48001021
CAGTCATCTTCCAAGTTGC
GTGGACGGATTCAATGATCC
CCTTCCACAAACTCTGTGC
CAGTCATCTTCCAAGTTGCACGTGGACGGATTCAATGATCCCAG








CTATCCCCTCCCGAAATTAAACTGATGAGCAAATGAAATGCAAGC








ACAGAGTTTGTGGAAGG





Hsl008g10
Chr22
48001872
GAGAGCAGAGGGCTTCTGG
GAGGACACTCCCATTCTGG
CAGCATTACAGCCCTCCC
GAGAGCAGAGGGCTTCTGGTAAATGAGGACACTCCCATTCTGGC








AGTGTCAGGAGAGTGGTTTCGGGGAGCGTGGGTAGTAGGGAGA








GCAGTGGGGAGGGCTGTAATGCTG





Hsl008g11
Chr22
48002641
CAGTGGATTAGCCTAAACGC
CTGAATGAGGCCACTTTTCC
CTCTGTTCTCTTTGCAGTGC
CAGTGGATTAGCCTAAACGCGGTCTGCAGCCACTATTCAGACTG








AATGAGGCCACTTTTCCCCCCAGAAGGATGTGTGTGCATGGGGT








CACAGTCCTGCGAGGGAGACCTGGCCGCACTGCAAAGAGAACA








GAG





Hsl008g12
Chr22
48003056
CTTCATGCTCTCATCAAACC
GTAACTTCCTGGTTCTTGCC
CAGTTCTCTGATTGAGATGG
CTTCATGCTCTCATCAAACCGGTAACTTCCTGGTTCTTGCCATGC








AGCCTACAAATGTGTCTCCAGCCCTCGCTGCTGTGTGGGTTTGC








CATCTCAATCAGAGAACTG





Hsl008h01
Chr3
134517897
GTTGACAAGTAGTGGGTTCC
CATTGCTGATGCATGAGTGC
GTACAGTGAAATTCAGTGC
GTTGACAAGTAGTGGGTTCCCAGTAGGCATTGCTGATGCATGAG








TGCACGACTAAATTACTGTGCCCCTTTGTGGCGTGCCCCAACGT








GAAATGCTAGGGCACTGAATTTCACTGTAC





Hsl008h02
Chr3
44000641
GTGAATGACATGGGTGAGG
GCATGGTGAATGCAGAACG
GCTTGTTTCTACCTGTAGC
GTGAATGACATGGGTGAGGGGTGCAGGGCATGGTGAATGCAGA








ACGGTGCCAGGTAAAGGAAGCGCCTGCTGTGCCATGCAGGTAA








GTTTAGCTACAGGTAGAAAGAAGC





Hsl008h03
Chr3
44001242
CACAGACAGCTGCTCAGG
CAACTGTGTAAACCTTTGCC
CTGGATCCTCCACTTGTGC
CACAGACAGCTGCTCAGGGAGCCCCAACTGTGTAAACCTTTGCC








AGTGGATTCTGAGGAGAACCCCGATATCAAGCAGATTAACGCCG








GGCTACTTTGGTTAAAGCACAAGTGGAGGATCCAG





Hsl008h04
Chr3
44001682
GAGCAAAGCTAATCCATTCC
CACATAGCAGCACAGAAGC
GTAGTCCTTGGAAAAGTAGC
GAGCAAAGCTAATCCATTCCCAGGTGGCACATAGCAGCACAGAA








GCCATCTGCTGCTTGCATCCACCCTGGGGGCCTCACCTGCTCAC








CACAGCTACTTTTCCAAGGACTAC





Hsl008h05
Chr3
44002894
GCGCTTGTCTCTTTTCTGG
CTGTGTTCTGCACATACTGC
GAATGGGCTGAATGAAGGC
GCGCTTGTCTCTTTTCTGGTCAATTCCTGTGTTCTGCACATACTG








CAGAAGATTTTCTGCCCACTGGGAAGGCTCTGTGTCTATGTTGG








CCTTCATTCAGCCCATTC





Hsl008h06
Chr3
44003138
GTTGGTCCTCCATAGAAGC
CCACTTGTCTGGTATTCACC
GATGAGTTCTGTGCCTTCC
GTTGGTCCTCCATAGAAGCCAAATAATCCACTTGTCTGGTATTCA








CCACTGCCCAGGAAAAGAAATGAGTGAAAGAGGCACCTGGTGAG








GTCCATTGCAGGGAGGCAGGAAGGCACAGAACTCATC





Hsl008h07
Chr3
123000854
GTATCCCCTTCACTTCTGG
CCTACTCAGCTCTTGTTCC
GAACACTGGTGACCATAGC
GTATCCCCTTCACTTCTGGTCCCTACTCAGCTCTTGTTCCTCAGC








CTCCTGCTCTGGGTGCACCTGCTCCCCAGCCCCATGCACTGACT








CTTGCTATGGTCACCAGTGTTC





Hsl008h08
Chr3
123001360
GAACATGGGATGAACTCAGC
CACACTTTACTCAGGTTGG
GCTGTTGTTCTCAAGTTCCC
GAACATGGGATGAACTCAGCACACACACTTTACTCAGGTTGGAA








GCAGAACGAAAACCCAACACCACTGGCGGGCGATGTGGAGGGG








CAGGGAACTTGAGAACAACAGC





Hsl008h09
Chr3
123001728
GAGGTGAAGATCATTCTAACC
GAAGCAATGGAAAGATTTGGG
CCTATGAGGAAGACATTTGG
GAGGTGAAGATCATTCTAACCTGAGAAGCAATGGAAAGATTTGG








GCATGGGCCCTAAGGATTCCACTGAATTCTGTGCTAGAGTATCAT








TTTCCAAATGTCTTCCTCATAGG





Hsl008h10
Chr3
171001001
CCAAAACCATTCACTTAGGG
CTTTGGTGCTAAAGCTTCC
CCCTTAACTGGCAGTCAGC
CCAAAACCATTCACTTAGGGGAATTTCAAACTTTGGTGCTAAAGC








TTCCAAATAATCAGCATCACCATTCACCAAGGAGCAGAGGAGTTC








GGTCTTGCTGACTGCCAGTTAAGGG





Hsl008h11
Chr3
171001501
GCCATCTTCCAGGTTTTCC
CCCACAAAGGTCTTTCAGG
GAGATCCCATTGTCTTTGCC
GCCATCTTCCAGGTTTTCCACAACCCACAAAGGTCTTTCAGGTGG








GTATAATTTGGGGTTACTTGTTAAGATGGAGTTACAGCACAGCTT








CATTGGCAAAGACAATGGGATCTC





Hsl008h12
Chr3
196515646
GAAGAGCCTGTTTCAGTGG
CTACAGGAGGGATCAGAGC
GTAGTGCCTACATACACCC
GAAGAGCCTGTTTCAGTGGCCCACCTACAGGAGGGATCAGAGCA








CATCCATGGAGCTGAGTGCCGCCCGGTGTTACTGGAAAGCAGAG








AGGGAAGGACAGAGAATTACAGCAGGGTGTATGTAGGCACTAC





Hsl009a01
Chr4
25002345
GTAGAAGAAAGATCCACCCC
CTCCACTGGGGACGGTCC
CTGCAAGAAGCATTCTTCC
GTAGAAGAAAGATCCACCCCCTCCTTCAAGCTGATCTCCACTGG








GGACGGTCCACATATTTCTCTGCTTTGCATTTTTGCTGTTGCTTG








GTTGGTTTTTTGTTTTACATTATTACTGGAAGAATGCTTCTTGCAG





Hsl009a02
Chr4
25002882
CAGCTGGGAATGTGATACC
GCAACACTGTGAAAAGATGC
CAGTCCCAGCAACTATGCC
CAGCTGGGAATGTGATACCTCTCTGCAGTAGCAACACTGTGAAA








AGATGCCACCTTGCCATCTCTACAGGTGGCTGGAATTGGGAACA








TCACTTTGATCTGGCATAGTTGCTGGGACTG





Hsl009a03
Chr4
25003068
CAACAGAAAGAATAGCTTGCC
CTTTAGGACTGGAGGAATGG
CTCTTGGTTTCTTTGAACAGG
CAACAGAAAGAATAGCTTGCCATCTTTAGGACTGGAGGAATGGC








AAAGCTCTTTCCCTTTCAGCCTCCAATGGGGGGACCTGGGCATT








TGTAGCCTGTTCAAAGAAACCAAGAG





Hsl009a04
Chr4
25003539
GTGCTACTTTCATGGCTAGG
GTTTCTCTTTCAGAGCTACC
GATTCTTAGTGGATGTTCCG
GTGCTACTTTCATGGCTAGGAATGAAGTTGTTGGGTTTCTCTTTC








AGAGCTACCCCTAAAGGCATTCACTTTATATTCTCTGAAGAGAAC








CAGCTAACCAGGCGGAACATCCACTAAGAATC





Hsl009a05
Chr4
25004256
GTTACCCACAAACTCAACGG
GTTCTGAGAAGCAGATGAGC
CTCTTTCTTACGGTTCAAAGG
GTTACCCACAAACTCAACGGGTGGGTTCTGAGAAGCAGATGAGC








CATGAAGAGCATCAAACAAGCATTACTGCTCTGGCCACCACCAG








GGTCACCTTTGAACCGTAAGAAAGAG





Hsl009a06
Chr4
25004641
CTTTTCAGCAGACTTTTGGC
GCTAAAGTGGAATGAGAGG
GATGAGGAAGAAGACAATTGG
CTTTTCAGCAGACTTTTGGCTTTAAGAGTTCTTACCAAAAAGATTG








CTAAAGTGGAATGAGAGGGGCTCAAAGNNNNNNNNNATTTCATT








ATAAGTGCTGTCCCATCTTATCCAATTGTCTTCTTCCTCATC





Hsl009a07
Chr4
154000870
GTCATGACAACTTCTGTCC
CGCTTACCGGAAACAAACC
CACTTCCCAGGCCAAGGG
GTCATGACAACTTCTGTCCCCTTCACACAGACCGCTTACCGGAAA








CAAACCTTGAACTCCCCCTGCTTAAGACTGAAGCCTCTGTCCATC








TGACCTTCCCTTGGCCTGGGAAGTG





Hsl009a08
Chr4
154001138
CCCAACAGGGACATGTCC
GTTACATCATGTCAGATGGC
CATCCAGATAAGCAGATTGC
CCCAACAGGGACATGTCCGTCACGCTGGTGTGTTACATCATGTC








AGATGGCAATTGAATGCGCTGTTAACATAAGCTGACAGGAAGGC








TCTAGCAATCTGCTTATCTGGATG





Hsl009a09
Chr4
154001718
CCAGTTTCATAGACATCTTGC
GCAAAAGATTCTTTCCTTTGC
CAAGCTGGGGATGTTTTGG
CCAGTTTCATAGACATCTTGCAAAGGAAAAGATTCTTTCCTTTGCA








AGATACTATGAAAAGTATTCATAGGAGAAGGCATCTGCACCAATC








CATAGACCCTCCAAAACATCCCCAGCTTG





Hsl009a10
Chr4
154002285
GGGATGTGTTGCACAAAAGC
CAGTCTGTCAACTCTTTAGG
CAACACTCTGACTTTCTAGC
GGGATGTGTTGCACAAAAGCAGGGCTCAGTCTGTCAACTCTTTA








GGTTCTGAGGGGGCCAGATGCTCCCCGTTGTTATTCCAGGCCCG








GCGGCTAGAAAGTCAGAGTGTTG





Hsl009al1
Chr4
154002860
GGTTCTCCTGACCTCTCC
CCAGTTGTGTTTCTGTTCCC
GTTCATCAATTGTACTCAGC
GGTTCTCCTGACCTCTCCTCCAGTTGTGTTTCTGTTCCCAAGGTG








GTGCCTCGGTGCTAATACCTCGTAATTTTTCTGTCAAACCTTTCC








AGTGGCTGAGTACAATTGATGAAC





Hsl009a12
Chr4
154003669
CAGCTCTACCAACCACAGC
GAAGTGGTAAAGTTTCTTCGC
CACACCCAATGAATGAACGC
CAGCTCTACCAACCACAGCAGGAGACAGAAGTGGTAAAGTTTCT








TCGCTCATGCAGACGAGAGCCATGGGCACGGGGCCGGCACCAG








GAAGAAGCGCGTTCATTCATTGGGTGTG





Hsl009b01
Chr5
3000224
CTTCGGTCTGTGTTGAAGG
CTGTTCTTCTCTGGGCTGG
GACATGAGATCCACAACCC
CTTCGGTCTGTGTTGAAGGGACAGCCCCCACCCGCTGTTCTTCT








CTGGGCTGGCGCTGAGCTTTGCCTGTGCATGGAATCACCCAGAG








CTGTCGGATGGGTTGTGGATCTCATGTC





Hsl009b02
Chr5
3000686
CTGTGGCTTGATTTCTTCCC
CCATGAATGCGGAGGAAGC
CTGTGTCCTTTGCTAGACG
CTGTGGCTTGATTTCTTCCCCCTCCCATGAATGCGGAGGAAGCC








GACTTTGAGAGATGAATGAACCATGTCAGTCCTGTCTTGAGAAGC








CCCTCGTCTAGCAAAGGACACAG





Hsl009b03
Chr5
3002024
GTACCAGTCAGGTTATGCC
CAGCTGAGTAACAAACATCC
GCCCTCTAGAAGAATCTTGC
GTACCAGTCAGGTTATGCCGTATTCAGCTGAGTAACAAACATCCT








CACAACTTCCAAGCCAGGCAGGAGCCCAGGGAGAGTTGGAACAT








GCAAGATTCTTCTAGAGGGC





Hsl009b04
Chr5
3002784
GATGCCAAAACTAAACTCTCC
CTCAGAGGTCCAAGAAAGC
GTCCAGAAACACCCACCC
GATGCCAAAACTAAACTCTCCTCTCAGAGGTCCAAGAAAGCACAT








TAGTTTTAAGATAAATCAGAGTTCCATTTCTGTCCTTGGACGTGTT








GGCAAGGGGGTGGGTGTTTCTGGAC





Hsl009b05
Chr5
3003357
CAAGCAGGAGAGGCATGC
GCTCTTGGAAGAACTTTAGG
CCTCTACAGATACATCATGC
CAAGGAGGAGAGGCATGCATTTGCTCTTGGAAGAACTTTAGGAA








CAGTCTTATGATGGGGGCTGCTTCCCACCCACAGCTTTTTGCATG








ATGTATCTGTAGAGG





Hsl009b06
Chr5
3004394
GGCCACAGCAATGTTGGG
GTTTCACTCTGGCTAACAGG
CCTGAATTGAATAGGCACCC
GGCCACAGCAATGTTGGGGAGTTTCACTCTGGCTAACAGGTTGG








TTTCTAACTCAAGTTTCCATTTAACCTCATAACTGAAAGGGGTGC








CTATTCAATTCAGG





Hsl009b07
Chr5
174000178
CACCTCAGAGCCAATAGCC
GAACAGCTGTTTGGACATGG
CAGAAGTCACCAGAGATCC
CACCTCAGAGCCAATAGCCCAGAACAGCTGTTTGGACATGGATT








GTTCTCTCTTTTGCTTCTGATGTGGAACTTTCTTTCCAGCAGGGAT








CTCTGGTGACTTCTG





Hsl009b08
Chr5
174000879
CAGCCTGAAACAACAACGG
GTCAAGGCAAGGGTAATCC
GACCAAGAAAGGCAGTAGC
CAGCCTGAAACAACAACGGATGGTCAACGCAAGGGTAATCCACC








AGAGGAACACTGAGCGGAGCTGTACCGCCCCAGCCACATCAGC








TACTGCCTTTCTTGGTC





Hsl009b09
Chr5
174001818
GAATGCAGCTTGATGATCCC
GGAGAGGAAGTGTCACAGG
GAGAGCCAAACACCTCCG
GAATGCAGCTTGATGATCCCAAATAACCAGGAGAGGAAGTGTCA








CAGGGTGAGGACAATGCAGAAACTACCCACTTCTTCCTGTGCCC








TTGATCCTCGGAGGTGTTTGGCTCTC





Hsl009b10
Chr5
174002223
GACAATGGAGGAAGTAGGC
GGACTGCCAGAGGCTTGG
CAATGGCATAGGCTTTTGG
GACAATGGAGGAAGTAGGCTGGACTGCCAGAGGCTTGGATTTTA








CTGACATCTGATCTTAGGGCATCACACATGGGTTGGCCATTTGAA








AGAATTCCAAAAGCCTATGCCATTG





Hsl009b11
Chr5
174003634
GGGTTGCTGGGAAACAGC
GCTTGACAACAGCAACAACC
GTGGACTCTTTTCTCATAACC
GGGTTGCTGGGAAACAGCATTTAAGACCTTGTTAACAATATGCTT








GACAACAGCAACAACCAGGCATAACATAACTAATAGTAGCATGCT








CTAATCAGCCCCCTATAGAGACAAGTCCAGGTTATGAGAAAAGA








GTCCAC





Hsl009b12
Chr5
174004074
CCAAGGAAGAAACCCATGC
GCGATGAAACCAGTATCCC
GTTTCAGTGTTTACATACTGG
CCAAGGAAGAAACCCATGCATAAGGCGATGAAACCAGTATCCCT








GTGACCTCTAGGCCGTTCGCTCTTAGACAGGCAGGTCCTTTGGG








TGATGGCCAGTATGTAAACACTGAAAC





Hsl009c01
Chr6
5001280
GCAAGTTTACTATCATCAAGC
CTCAGAACGGAACGTGACC
GAACTCTGTCTCTGAGAGG
GCAAGTTTACTATCATCAAGCAAAAAACTGACTCAGAACGGAACG








TGACCTTTGGGGATGCGCGGAGAGGGGTCCAAAGTAGAATTCTA








GATAAACATACACCTCTCAGAGACAGAGTTC





Hsl009c02
Chr6
5001820
GAAACAAACCAGTCCAACCC
GCAGATATGGGTGGAAATGG
GAGCAAAGTGCTTGTTGGG
GAAACAAACCAGTCCAACCCAGCAGATATGGGTGGAAATGGGGT








GAGTAGAGGAGGGGTTATGGCTACAAAATCTAAGCAGAAGACAC








TGGACCCCAACAAGCACTTTGCTC





Hsl009c03
Chr6
5002147
GAAACCACCACCTAAAGAGG
GAAAGAACAGGATGAGAATGC
CTGTTGTTTTGTTTCAAACAGG
GAAACCACCACCTAAAGAGGGTACAAGAAAGAACAGGATGAGAA








TGCGGGGGAGAACGCGTGTGCACCTGACCACACAGACTATACCA








CAGGCCCTGTTTGAAACAAAACAACAG





Hsl009c04
Chr6
5003843
GAGTGAGCAGCCAGAACG
CTCCAGACTGGGTACCGC
GAGTTGTAGTCTCTTAACTGC
GAGTGAGGAGCCAGAACGCCCCTGACAACAGCTCCCTCCAGACT








GGGTACCGCCCCCACGCCCGGCGCATCCTGGGAGTTGTAGTCC








TGTAGCCCTGCAAGCCACTGGCTTAGAGCAGTTAAGAGACTACA








ACTC





Hsl009c05
Chr6
5004040
CTAGCACTCTCCCCAAACC
CGAAAAGCCGAGGACAGC
CTTCGGCAACCACAAGTCG
CTAGCACTCTCCCCAAACCTCTCTCGCACGCGGGGACTGAGCAC








GGCCCGAAAAGCCGAGGACAGCCGGACTCACCCTGTAGTTATAG








TAGTGCGTCTGCACAAGATGCCGGTGGCGCGACTTGTGGTTGCC








GAAG





Hsl009c06
Chr6
5004763
CACACTGTTTGGTTCACAGG
CCATTGGGGACCTCTTGG
CAACCTTCCCTAATGTTTTGG
CACACTGTTTGGTTCACAGGACTCTGTTACCCATTGGGGACCTCT








TGGCCATTATTAACACAGGCCAACAGGACTAAAAGTTTGTATCAG








TCCTTCCCAAAACATTAGGGAAGGTTG





Hsl009c07
Chr6
167002321
GTGCTCACTGTCAACCCG
GCAGAGGCCATGCATAGG
GTCAGCCCTGAGAAAGCG
GTGCTCACTGTCAACCCGGCCAGCAGAGGCCATGCATAGGTGG








CCAGGTGCGACTACCTGTGTTCCAGCAAGTAGATGGAAAAGGAA








CACTGTCGCTTTCTCAGGGCTGAC





Hsl009c08
Chr6
167002845
CTAAGTATGCACTTTTGTGAG
CCATTACATATCCACACTGG
GCATAGAAGATACTCTGACC
CTAAGTATGCACTTTTGTGAGCACTTGTTCTAAATTATTGCCATTA





C


CATATCCACACTGGAATTGAAAAATAACCCAGCTCAATTCATCGG








CCAAAGACACCCAGCCTCCATGGTCAGAGTATCTTCTATGC





Hsl009c09
Chr6
167003342
CTGTGGCATGAACAGAATGG
GAGACTTGGGATCTTACCG
GTGTATCTCACTTGCATGCC
CTGTGGCATGAACAGAATGGAGAGAGACTTGGGATCTTACCGGG








AGACAAGATCATACCCACCAACCCAACAAATGAGGCCACAGGCA








TGCAAGTGAGATACAC





Hsl009c10
Chr6
167003857
GATTCCCAGTGTGAACTCC
CAGACTCTGCTTTAGGAGG
GTTCTCACCCTAAGTCATGC
GATTCCCAGTGTGAACTCCGTGTCAGACTCTGCTTTAGGAGGAG








ACAGATCCTATTTCAGGGCTGGGCACACCTAAAGATGGAGCCTG








GCGAGGAGCATGACTTAGGGTGAGAAC





Hsl009c11
Chr6
167004026
CCTCATTGAGGACTTCAGG
GTTGCACTGTACTATACAGG
CTTTCAGTTATGCACGTGCG
CCTCATTGAGGACTTCAGGTCGTTGCACTGTACTATACAGGGGAT








TCGTGTGGAATGAGTTGATTGCTGCTGCTCTTGCCCCACAACACA








CACACGCACGTGCATAACTGAAAG





Hsl009c12
Chr6
167004744
CAACGCGACCAACAGTGC
CACTGGAGTGCCTTCTGG
CATCAAACCATGCCCATGC
CAACGCGACCAACAGTGCCACACTGGAGTGCCTTCTGGGATGAG








CAGAATGCCTTTAGACCAGTCACAGTGTGGCTGCTTCCGTCCAA








ATGGCGCTCGGCATGGGCATGGTTTGATG





Hsl009d01
Chr7
24000376
CTATGGATAACAAGCAGAGG
CAACCCACTTTTCATCAGC
GACTGAATGGTAACTGGACG
CTATGGATAACAAGGAGAGGTAACAACCCACTTTTCATCAGCATA








TTCTTTTTTCCAGAACACAATGCAATTACTGAGTGTGAGCTTCATC








GTCCAGTTACCATTCAGTC





Hsl009d02
Chr7
24001065
GTCAGGATCCTTGCAAAGC
CAAGTGCATGGTGAGATATGG
CATTACTCAAATGGGGTCTGG
GTCAGGATCCTTGCAAAGCAAGATAAGAGTAAATCAGATCAAGTG








CATGGTGAGATATGGCTGTATGAGAGTTTGCAGAGATATTTTTCT








TTTCCCTTCCAGACCCCATTTGAGTAATG





Hsl009d03
Chr7
24002836
GAACATCACTCTGGAAAGCC
CTGATGAGGCAATACATTGG
GAGGTTGACAGAGGGTAGG
GAACATCACTCTGGAAAGCCAGGGAGATTTTGTGCAAATCTGATG








AGGCAATACATTGGGAAATTAAACATGGTAATGACTCTCTGGTGA








ACTGATATACGACTCTCCTTTTACCTACCCTCTGTCAACCTC





Hsl009d04
Chr7
24003315
GATGACAACAGACTATTCGG
GAGTTCTCTGAAATGATTAGC
CTCCATTTGGGCTAGTGG
GATGACAACAGACTATTCGGAAGGTACTTTGTCTCAGAGTTCTCT








GAAATGATTAGCTATGTCTTACTTTTACCCGCTACTGAAGTGAAG








ATTGTAGGACACCTTCTCAGGCCCCCACTAGCCCAAATGGAG





Hsl009d05
Chr7
24003547
GTTCCCTCCTGTCTTTACG
CAGCTGTGTCTCAAGAGG
CATCTACACTAAGAAGAAGC
GTTCCCTCCTGTCTTTACGAACAGCTGTGTCTCAAGAGGTCACTG








AGGGAGCACTGGCTCTTCTCACAGCCAGCTCTCTCTTGAAGCTT








CTTCTTAGTGTAGATG





Hsl009d06
Chr7
24004247
GTGGAAAAGAAACCAGGCC
CAGTCTGAGGAGGAAAGAGG
CAACTTCAGCTAATCCATGC
GTGGAAAAGAAACCAGGCCCATTTTCAGCCAGTCTGAGGAGGAA








AGAGGTCCCTGAAGAGGCCTGGGGTTTGACTGCTGGGACCTAGT








GGGGCAAGTGGCATGGATTAGCTGAAGTTG





Hsl009d07
Chr7
130001048
GGCAACAGCTTTGAAAACC
GTCCATTCTTGTCCTGAAGG
GATCAATCTTATGCCAGAGG
GGCAACACCTTTGAAAACCAGTCCATTCTTGTCCTGAAGGTAAAA








GCCCACAATGTCAACCTGTAGACTCTACCTTGAGGGCCTCTGGC








ATAAGATTGATC





Hsl009d08
Chr7
130001526
CTTCACAGGAGCCACTGG
CAGAATTCAAGCAACTCAGG
CTAAGAATTGCTTTCTGATGG
CTTCACAGGAGCCACTGGAACAGAATTCAAGCAACTCAGGACCC








TGCAGTTCCTTGGGTCATGAAGGAAGTAGGAGATGTGAATGCAG








AGCCCATCAGAAAGCAATTCTTAG





Hsl009d09
Chr7
130002216
GTAGCCCAGAGACAGTAGC
GAGTTCAAACCTCGGTTTGG
GTGAATTCCAGTGTCAATCC
GTAGCCCAGAGACAGTAGCTGTCTGAGTTCAAACCTCGGTTTGG








GGCCCGATTCTTTTTCTCAGTTCAGCACTGGAGGTTCTCGGCAC








CCAGCCATCTGGATTGACACTGGAATTCAC





Hsl009d10
Chr7
130002776
CATGGACATCTTCATAGAGC
CAAACCCTGATGGGTTTGC
GTGACCTTTTCTCCATCCC
CATGGACATCTTCATAGAGCTCGTCACAAACCCTGATGGGTTTGC








TTTTACCCACAGCATGGTGAGGGAACCTGGGAAGGATGGAAGGA








GGGGGTCAGCTCTAGGGGGATGGAGAAAAGGTCAC





Hsl009d11
Chr7
130003323
CAACAGGAACTGGAAGTCG
GTTTTGGAGGTATGGCAACC
CTGACTGAGTGGGAGAACC
CAACAGGAACTGGAAGTCGGGTTTTGGAGGTATGGCAACCTGCT








GTCCTGGGGCAGGGTTGGAGAAGAGGTGTTGGCCCATGGCAGG








TTCTCCCACTCAGTCAG





Hsl009d12
Chr7
130003733
CTAGCCCTGCCCTGAAGG
GCACAACATGAAGAAATGCC
GGACACTTGAAACTATTGCC
CTAGCCCTGCCCTGAAGGGAGCACAACATGAAGAAATGCCTCTG








AACTCTTTCCCCGAGAGCTAGGACCTGAAATCTGCCCTCTGGGG








AGGCCAGGGCAATAGTTTCAAGTGTCC





Hsl009e01
Chr8
10001122
CAGAAGCAGCAAATGCAAGC
CTTTTGCAAGGAAATCAGGG
GTGATTGGAAACGAAAGTGG
CAGAAGCAGCAAATGCAAGCTGAAGTCTAACTTTTGCAAGGAAAT








CAGGGCTCCTTCTGGCTCCTCTGATATCTACCCTCATGACAGAAT








TCCAAGCAAGAGGGCCACTTTCGTTTCCAATCAC





Hsl009e02
Chr8
10001529
GATGGTGGCTTGCTTTTCC
GTCTGGTGGTAACAGTACC
CCTGACTTTCCTAAAGATGG
GATGGTGGCTTGCTTTTCCCATTTGTGAAGTCTGGTGGTAACAGT








ACCCAGACAGGGAAGTGAACAACCCTATAGTATAGTGACCGGAT








TTAGCAGGGCCGGATCGCCACCATCTTTAGGAAAGTCAGG





Hsl009e03
Chr8
10002349
CTTCTCTGTTAACTCTGTGC
GACAAGACACATGTAAACCC
CCAAAACGAGCCCAGCAGC
CTTCTCTGTTAACTCTGTGCCTTGATTGCTTAAGACAAGACACAT








GTAAACCCCATGATTATTGCCATTTTTTTGGACTTTGCAAAGACTC








TGCCTTCAAACATAAAGCTGCTGGGCTCGTTTTGG





Hsl009e04
Chr8
10002667
GTCAAACTCCAGGGACAGG
GCCTATGCAGTGCGAGGC
CTATTGTTTGTCTTAAGGAAGG
GTCAAACTCCAGGGACAGGCAGGGCCTATGCAGTGCGAGGCGA








GAACCGTCCGATCGGAGCACCTGTTCTATGTGGGGATCAGCTTT








TCCTTCCTTAAGACAAACAATAG





Hsl009e05
Chr8
10003037
GCATCCTCTGAAGAGGCG
GTTTGTGAGCACTCCATCC
GAAAGTGAACAGGTCACAGG
GCATCCTCTGAAGAGGCGTGTTTGTGAGCACTCCATCCACGGGG








CGGGTGGCCTTCTTGTACTTTTGATGTTTATACATTCTGATGATGT








GACCCTGTGACCTGTTCACTTTC





Hsl009e06
Chr8
10003657
GACCACATAACCCTAGAGC
GCAAAGAATGGTGCGATCG
CAGTTTACTCTAACATCACC
GACCACATAACCCTAGAGCAGCAAAGAATGGTGCGATCGTAAAG








GAAGAACCCATATTTGCTTTGGGNNNNNNNNCCCCTAGCTATTTG








GGTGATGTTAGAGTAAACTG





Hsl009e07
Chr8
95001022
GAATGTCAAGTGGATGTCC
CCTTCATCTGACATAGTTAGC
GCCAGAAACATCCATGGC
GAATGTCAAGTGGATGTCCAGACCTTCATCTGACATAGTTAGCTT








AGCAAAAACAAAAGTAAGATCTTTGTTCAGAGGGAGGAAATTCCA








TGCCATGGATGTTTCTGGC





Hsl009e08
Chr8
95001714
GGTTAGCAAAGCCTTCTCC
CCTTTCCTATTCTCAATGGC
CAGACTAAGTTCCTTGTTGC
GGTTAGCAAAGCCTTCTCCTGAATCCTTTCCTATTCTCAATGGCA








TGATATGTCAAGAACGTCTTTTGAGCCTGTTTGATCCAGTGATGT








TCAAATGTGCAACAAGGAACTTAGTCTG





Hsl009e09
Chr8
95002098
GACCTGTGTTTAGATGTGC
CTTCTGAAGGAAGTCATCCG
GACTTATGGTGGTCCTTAAGG
GACCTGTGTTTAGATGTGCTGTCACTTCTGAAGGAAGTCATCCGA








GCTTAAACTTATGGGATCTCACAAGGGGCCTGCAGTATCTCCTTA








AGGACCACCATAAGTC





Hsl009e10
Chr8
95002612
CGCTTACTGGAGACTGTGC
GCCAAGAGGTAATCTTCGG
GACTCTTAGGCAACTTGGC
CGCTTACTGGAGACTGTGCTCAAGAAAAAGCCAAGAGGTAATCTT








CGGCAGCTGCTGTGATATCTGCATATTTTAATTTTTTCCATCTATT








TAAAGCCTGCCAAGTTGCCTAAGAGTC





Hsl009e11
Chr8
95003090
GTAGCTGTTGTGGAGTAGC
GGTGAGGTGTATAGAGATCC
GCAATGTCCTGCCTTTTGC
GTAGCTGTTGTGGAGTAGCAGTGGGTGAGGTGTATAGAGATCCA








TTCATCCATGCAGCAAAACACTTGACTGGCTTGAGATGTGACATG








CGGAGCAAAAGGCAGGACATTGC





Hsl009e12
Chr8
95003647
GAATCTGAGGCTCAGGGC
GCAGAAGAGGGCTCTTGG
CTGAAATCAAAGGGGTTAGC
GAATCTGAGGCTCAGGGCAGCAGAAGAGGGCTCTTGGAGAAGA








GATGACAGTTGGCTGAAGTCGTCAACAGAGGGAGCTGGGAGGC








TGCTAACCCCTTTGATTTCAG





Hsl009f01
Chr9
38000659
GGCCTCCAAAGTCTTTGGG
CTGCTCCTCAATTCAGTCC
CCTATGTGGCAAGTAAAGCC
GGCCTCCAAAGTCTTTGGGGGCTGCTCCTCAATTCAGTCCTATAA








AGTGCATGGCATTTGGCCCTCGGAAGCCCCTCAAGGCTGAGAG








GCTTTACTTGCCACATAGG





Hsl009f02
Chr9
38001855
CCCAAAGGAGATGAACAGG
GAAGAGAAAAGGCCATCTGC
CTGTGAGGTGGGATCAGG
CCCAAAGGAGATGAACAGGAGAGAAGAGAAAAGGCCATCTGCAT








CCTCCCCATGAGCTCCAGAGAGCACGAGTGGTGGTGAGTGACTT








TCATCCACCCTGATCCCACCTCACAG





Hsl009f03
Chr9
38002374
GTGGAAAAGCCATCACTCC
GACCTAGAGGACAGGAACC
CGGTAGTGCTCTTTCAAAGC
GTGGAAAAGCCATCACTCCCTGCAGAGGACCTAGAGGACAGGAA








CCCTGACCGACCTGGACAGGGTTCCTACAGGGGAAGGCAGGGC








AGGAGGCCTTGCTTTGAAAGAGCACTACCG





Hsl009f04
Chr9
38003209
CAAAGGCATAGGGACCTGC
GCTTTTCACAATTCTGAGTCC
CAAGGGTGGAGTTGGAAGG
CAAAGGCATAGGGACCTGCCCCAGGTGGGTGCTTTTCACAATTC








TGAGTCCCCTTCAGCTAAACACAGGACCTCCTTGGGTTCTGTCCT








AGGCTGAGGCCTCTACTTCCTTCCAACTCCACCCTTG





Hsl009f05
Chr9
38003751
GCTCAGCACTAACCCTTCC
CCAGTAAAGACTCACTGAGC
CTTCCTTGACCTCTTCTAGG
GCTCAGCACTAACCCTTCCCCCAGTAAAGACTCACTCAGCAGAA








ACAGTTCTCCGTAAGGTAAAGGACACAGCACAGAAATGGAAGCA








AATCCTAGAAGAGGTCAAGGAAG





Hsl009f06
Chr9
92000190
GAATGTCCACACCAGGGG
CTTCATTGTAATGAGAAGTCC
CCATCGTGCTGTTCAGTGG
GAATGTCCACACCAGGGGCCCAATCTTCATTCTAATGAGAAGTCC








ACATTTTAGAGATGTTGTAGGTGCCTGCCCAGTCTGGCTGAGGC








CACTGAACAGCACGATGG





Hsl009f07
Chr9
92000834
CAGAGTCTCAGCCACAGG
CAGCTTTACAGATGAGACG
GTGCAGACTGCATCTGTGG
CAGAGTCTCAGCCACAGGTGGAGACAGCTTTACAGATGAGACGA








ACCACTTCTCTTGTGGATTTTCCACGGTGACGAGTCAGCTGTATC








ACTATCATATCCCACAGATGCAGTCTGCAC





Hsl009f08
Chr9
92001027
CCAACAACTCAATGACATTCC
CAACTTCGAAGAGAAAGTCC
GTTTGACACAGAGCCATTCC
CCAACAACTCAATGACATTCCAGCAACTTCGAAGAGAAAGTCCCG








TCTCCCCAGGTCTGCCTTCCTGCCTTCCCCAATTCAGATCCCACA








GCTCACGGAATGGCTCTGTGTCAAAC





Hsl009f09
Chr9
92001631
CTGTTCCATGGTTGACCCC
GAATCCTCACCAACAGTCG
GCACTTACCAGTGACACC
CTGTTCCATGGTTGACCCCAAGAATCCTCACCAACAGTCGACATT








ACACTTGAGGCTAAGTGCCACATGAGGGGGCTCCCATGCTCCAC








CAGCCCTCGGGGTGTCACTGGTAAGTGC





Hsl009F10
Chr9
92002145
CTTCTCAGAAATCTTCTTACG
CAAACCTCCCAGGTCACC
CCTCTGGTAGGAAAACTGG
CTTCTCAGAAATCTTCTTACGCTCCCACAAACCTCCCAGGTCACC








TCGAGGGAGGCAATGGAACTACTCACGAAAGAATAATTGGATTTC








CCAGTTTTCCTACCAGAGG





Hsl009f11
Chr9
92002545
CTGTTAACGTGCTCGTGTCC
CACGCAACGGGTGCTTCC
GCTACCCTCATTTCAAGGC
CTGTTAACGTGCTCGTGTCCCACCACGCAACGGGTGCTTCCACA








CAAGCAGCCAACGCAGGGGGGGCTGCAAAACCTGGAAACCACA








CAATGCATGCCTTGAAATGAGGGTAGC





Hsl009f12
Chr9
92003110
GCACATGCCTGTCACACC
CATGTGAGGGAAGGAATCG
CTGTCCACTAGTCAACAGG
GCACATGCCTGTCACACCCATTTCCCCATGTGAGGGAAGGAATC








GGCCTGGAAATTCCCAATTTCTACATAAAGTTCACTATATTTAGGA








GGAAAAAATGTGACTCCTGTTGACTAGTGGACAG





Hsl009g01
ChrX
40000047
GGTAACTCTTGGAGCATGG
CACACTTATGACAAGTGAGC
GGCAATTGTGGACACTCG
GGTAACTCTTGGAGCATGGATGCCACACTTATGACAAGTGAGCA








GTGATTCTCAGCACAGAATGTGATATTTTTCTGTTGCACAAAGTTA








AACAGTGACCGAGTGTCCACAATTGCC





Hsl009g02
ChrX
40000788
GTGCAGTGCTAAACCTTGG
CTCAGGTTTGTTTTGTTAAGG
CACAGCTTATCCCCAAAAGC
GTGCAGTGCTAAACCTTGGAGATTCTCAGGTTTGTTTTGTTAAGG








GAGGCAGTATTCCCTTACCAGCTCCCCCAGAGAGCCTACATTTG








TCCAGGAGCTTTTGGGGATAAGCTGTG





Hsl009g03
ChrX
40001110
GGTAGGGTTTGGCTCAGG
CCATAGAGGGGTCCATTGC
CCAACCACTCTGGGTTCC
GGTAGGGTTTGGCTCAGGGAGGCCATAGAGGGGTCCATTGCTA








CAGGTTGCCCTCTGGCCTCGATGCCCACCTGTAAACTGCTATCTT








CAAGAGTGGAACCCAGAGTGGTTGG





Hsl009g04
ChrX
40001664
GGTTGGGTCACTTCGATCC
GTGCTAGTAGGGTCTTTAGC
CAAGAGTCCAAGGACTAGG
GGTTGGGTCACTTCGATCCTGCCTGGGCCCAGGTGCTAGTAGG








GTCTTTAGCCTTCAGCTGAAGGTTCTCCCCTGCTCCTCCACCATC








TGTTTGGCTTTACAACACACACCTAGTCCTTGGACTCTTG





Hsl009g05
ChrX
40002012
CCATTTCTCCTTGATTTCAGC
CCAAGTGAACATGCACTCC
GAAGAGAAAGTGAATCTTCCG
CCATTTCTCCTTGATTTCAGCACCCAAGTGAACATGCACTCCAAG








GCTCTGCTGAGGGTAAACAGAAAGCACCATCGCAGGGGTCCTTC








CTCCTCTCTCTCGGAAGATTCACTTTCTCTTC





Hsl009g06
ChrX
40003341
GAAGGTGGTACAAGGAACC
CAGGAGACTGCAGTATCAGG
GAAGACTCTGGTGTTGTGC
GAAGGTGGTACAAGGAACCTGCAGGAGACTGCAGTATCAGGTG








GCAGTATCAGGAGGCTGATAAATCCAGGCTAATGGAAATTACTAT








TGCACAACACCAGAGTCTTC





Hsl009g07
ChrX
110001161
CCCATGCTCTGGGTCTGG
CATGCCTCAACCTTCTTCC
CAGAAGTCTCCAAAAGTGG
CCCATGCTCTGGGTCTGGGTCATGCCTCAACCTTCTTCCCAGGG








AAGAACAATCTTTACACAGAAGTTTAGATAAGTTCCTATGACATTA








GACCACTTTTGGAGACTTCTG





Hsl009g08
ChrX
110001737
GAGTTTGGGTGTTTCTTCTCC
GGAACATTTCAGTTGACTGG
GAAACCAAATGTATCCAGGC
GAGTTTGGGTGTTTCTTCTCCATTNNNNNNNNNTTCTCCACTCTT








GGAACATTTCAGTTGACTGGGTTTTCATTGAACCCCATTCGCAGC








CTTATTCCTAACATTTTTGCCTGGATACATTTGGTTTC





Hsl009g09
ChrX
110002145
CCCAAGAGTGTCAAGTAGC
CTAGGATTGCCACTGGGC
CTTTGTTCATGTCTGACTGG
CCCAAGAGTGTCAAGTAGCTTTTTCTAGGATTGCCACTGGGCCC








ACAGGCATTCTCTGAATCACTCCACACGCTTTTGGGGTGGGAAT








CGGGCCCCAGTCAGACATGAACAAAG





Hsl009g10
ChrX
110003503
GGACGAGCTAGAGTTTGC
GCTGATTAGGTAGTATGCC
GGTTGTGAGCTGTCAGAGC
GGACGAGCTAGAGTTTGGAATTTAGCTGATTAGGTAGTATGCCTG








GGTGGGGCGACTGGGTCCCTGCCTGATTTACAATTACAAGACCC








CTCGCTCTGACAGCTCACAACC





Hsl009g11
ChrX
110004046
GTGTTGCATTTGGCAACACC
GTATCACACTCCTCAGAGG
GATTCACTTTAGACCTCAGC
GTGTTGCATTTGGCAACACCACAGAAGCTCCTCAGGTATCACACT








CCTCAGAGGCAGGTGGTATAATCTTGAATTGAGATCACTGAAGCA








CATCAGAAACCACACCTCCCAGCTGAGGTCTAAAGTGAATC





Hsl009g12
ChrX
110004631
CTCTAGCTGGGCATGAGG
GTGCAGTCCTTACAAAAGG
GGAGGCCTTGTACTAGGC
CTCTAGCTGGGCATGAGGGAAGAGGTGCAGTCCTTACAAAAGGT








CTCAGGTAAGAAGCTGGTCTTGAAAATTCTTTGTGTAAGTTCAGA








ATTCTCAATGCCTAGTACAAGGCCTCC





Hsl009h01
Y
13400975
GGTAAGAAAATGGTCCATCC
CCTATTCCACAGAAAGGATG
CAACATTAGAGACTATTCCAC
GGTAAGAAAATGGTCCATCCCCCTATTCCACAGAAAGGATGCTCA








TAACTACATGATGGATGAAAAAGAAAATATTAACAAATTCTGTTTG








CAAATCTAATATACTTTGTGGAATAGTCTCTAATGTTG





Hsl009h02
Y
13401213
GTCAGGGTTCTTTCAAGGC
CAGTGATGAACAACAGTCTC
GGTATATCCAGTAATGAAAGG
GTCAGGGTTCTTTCAAGGCTCCCAGTGATGAACAACAGTCTCCTA








CCTCATCCATCTATCAAAGAAAACTCACCCTCAAGGTTTACCTTTC








ATTACTGGATATACC





Hsl009h03
Y
13401686
GTGCTTTGTTCTCTTTGACAC
CTATCATTCTGGGACTTCTG
CTCAAGAAAGATGCAAGACC
GTGCTTTGTTCTCTTTGACACAGCTATCATTCTGGGACTTCTGTAT








ACAGCCTTTCCTTTGGTGGTCTTCTGGTGCTCCTTGGTCTTGCAT








CTTTCTTGAG





Hsl009h04
Y
13400027
CCGTAATCATTACAATGATGG
CCCAATCTAGAGGTGGAAAG
GAACTATTCTACACATTTCTTC
CCGTAATCATTACAATGATGGTCCCAATCTAGAGGTGGAAAGTTG








TTTGCCTGGGGTGGTGAGTAATTCTCTATTCAAAATATGAAGAAA








TGTGTAGAATAGTTC





Hsl009h05
Y
13400391
CTCATATGTAAAGGAACAACA
CTACCTTTCTTAGCCTTTCC
GACTTAAACCTCCCTAATGC
CTCATATGTAAAGGAACAACAGCTTCTACCTTTCTTAGCCTTTCCC





G


TCAGCCTCTTAAAAATTATGCCTACAATTATACCAGTCACTTCAGC








ATTAGGGAGGTTTAAGTC





Hsl009h06
Y
13594365
GAAGGGATGAATTACAAAGTG
GTGAGAAATGTTTGAGTGATG
CTGAAGCATGATATACAACAC
GAAGGGATGAATTACAAAGTGGTGTGAGAAATGTTTGAGTGATG








GAAGCTTTTGTTGTCTTTGTCAAAATGATAAAATTGTACAATAAAA








ATGTGTTGTATATCATGCTTCAG





Hsl009h07
Y
13597957
GCTAAGTCAAAGAACAAGGG
GCTATCAGGGTCAACCAAG
GGCTATTGTTACCTCAGTTG
GCTAAGTCAAAGAACAAGGGTGGCTATCAGGGTCAACCAAGCAG








CAAGGTGCCAAGGCAGTCCCCAGGGGTTGTTTGCAGAGGATACT








GGCACACTTACACACACAACTGAGGTAACAATAGCC





Hsl009h08
Y
13595748
GGTAATGTAGATAAGGTATCC
CAGCACCCTGATCAATAAGG
CTCTGTACCACATGAGTATC
GGTAATGTAGATAAGGTATCCCTCAGCACCCTGATCAATAAGGAA








TCACTTTTCACATTATATTGTTTAACAAATTCTATGCTCCAACTGCT








CCAAATTATGGATACTCATGTGGTACAGAG





Hsl009h09
Y
13598283
CAACAGCAGCATCTCATGC
CTGAAACTCTAATAGACAAGC
GTGTTTATCTTCTAAAAGTGAC
CAACAGCAGCATCTCATGCATCTGAAACTCTAATAGACAAGCCAC








AATTTCTGGGAGCTAACTATGGCTTCCAGGCCTGGGTCACTTTTA








GAAGATAAACAC





Hsl009h10
Y
13595894
GTGAGAAATGCTGAGGTCAC
CAGTTGGGTCAATGGTCAG
GGTCATAATGCCCAAACTTG
GTGAGAAATGCTGAGGTCACTGCAGTTGGGTCAATGGTCAGGAG








ACAGTAAAGAATTTCATGGAAAGAAGAAGCCTGTCAGCAGACTTC








AAAACAAGTTTGGGCATTATGACC





Hsl009h11
Y
15681453
GGTTTCATTTGACTGTAAAGC
GTATCTCCTTCTTTCTTGGC
CCATTCTTTCACTAACATGAG
GGTTTCATTTGACTGTAAAGCTGTATCTCCTTCTTTCTTGGCATGT








AAAGATGGCAGGTGGAGCATTCTTTGCCTGCTACCCTCTCCCAG








CCACTCTCATGTTAGTGAAAGAATGG





Hsl009h12
Y
15630997
GAGAAATAGCCTTCAAGGAG
CAGTTCATGATAGCTTGCTG
GTTCTCATGAAATCCTTGGG
GAGAAATAGCCTTCAAGGAGACAGTTCATGATAGCTTGCTGTTTA








AAGTGTTCTTATTTAAATTCCCAAGGATTTCATGAGAAC








Claims
  • 1. A method for counting the absolute copy number of a nucleic acid sequence in a cell, comprising the following steps: (i) dividing a lysate of the cell or a lysate of a sample of the cell into a plurality of aliquots;(ii) providing conditions suitable for the amplification of the nucleic acid sequence in each aliquot;(iii) counting the number of aliquots in which the nucleic acid was amplified in step (ii) thus the copy number of the nucleic acid sequence in the cell.
  • 2. The method according to claim 1, wherein, in step (i) the lysate is divided into at least 8 aliquots per cell used to make the lysate.
  • 3. The method according to claim 1, wherein the lysate of step (i) is from a sample of 10 or fewer cells.
  • 4. The method according to claim 1, wherein the lysate of step (i) is from a single cell.
  • 5. A method for counting the absolute copy number of a chromatid in a cell comprising: (i) dividing a lysate of the cell or a lysate of a sample of the cell into a plurality of aliquots;(ii) providing conditions suitable for the amplification of one or more nucleic acid marker(s) of the chromatid in each aliquot;(iii) counting the number of aliquots in which the nucleic acid marker was amplified in step (ii) thus the copy number of the chromatid in the cell.
  • 6. The method according to claim 5, wherein the copy number of a plurality of nucleic acid markers from the chromatid is determined in order to analyse multiple loci on the chromatid.
  • 7. The method according to claim 6, wherein the plurality of nucleic acid markers comprises one or more pairs or multiples of markers which occur in close proximity on the chromatid.
  • 8. The method according to claim 6, wherein the highest number indicated by the plurality of nucleic acid markers gives the absolute copy number of the chromatid in the cell.
  • 9. The method according to claim 5, wherein the chromatid is from chromosome 21, 18 or 13.
  • 10. The method according to claim 9, further comprising repeating steps (i)-(iii) for chromatids for each of chromosome 21, 18 and 13.
  • 11. (canceled)
  • 12. A method for investigating the ploidy status of a cell, comprising counting the absolute copy number of chromatids for each chromosome in the cell by the method according to claim 5.
  • 13. The method according to claim 1, wherein the cell is a polar body.
  • 14. The method according to claim 1, wherein the cell is derived from a cleavage stage embryo.
  • 15. The method according to claim 1, where wherein the cell is a trophectoderm cell of a blastocyst.
  • 16. The method according to claim 1, wherein the cell is a fetal cell from an amniotic fluid or chorionic villus sample.
  • 17. The method according to claim 16, wherein the cell is in telophase.
  • 18. The method of claim 5, wherein the cell is an oocyte.
  • 19-22. (canceled)
  • 23. The method according to claim 13, wherein the ploidy status of both polar body I and polar body II are investigated.
  • 24. (canceled)
  • 25. The method according to claim 5, wherein the amplification of the one or more nucleic acid marker(s) of the chromatid is performed with a plurality of primers capable of amplifying the nucleic acid markers from the chromatid.
  • 26-29. (canceled)
  • 30. A primer set comprising one or more primer(s) from those listed in Table 2.
Priority Claims (1)
Number Date Country Kind
1007522.4 May 2010 GB national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB2011/051979 5/4/2011 WO 00 1/9/2013
Provisional Applications (1)
Number Date Country
61395414 May 2010 US