The present disclosure relates to the technical field of unconventional oil and gas reservoir exploitation, and in particular to a method for coupling hydraulic fracture network extension and production performance of a horizontal well in an unconventional oil and gas reservoir.
In China, the huge unconventional oil and gas reservoir resources have become the main areas of the country for increasing reserves and production at present and in the future. Compared with conventional oil and gas reservoirs, unconventional oil and gas reservoirs have more complex geological conditions with natural fractures, featuring low porosity and low permeability, and resulting in extremely low oil and gas production. Field practice shows that the techniques of horizontal wells with long sections and stimulated reservoir volume (SRV) fracturing are the main means for unconventional oil and gas reservoirs to obtain industrial productivity. The fluid with a higher pressure than the fracturing pressure is injected into the formation to create hydraulic fractures and open natural fractures, and a proppant is pumped to provide effective support for the fractures, so as to build an effective flow channel from the reservoir to the wellbore.
Therefore, the key to the accurate prediction of the production performance of the fractured horizontal well in the unconventional oil and gas reservoir lies in the accurate characterization of the hydraulic fracture network extension shape and the accurate prediction of the post-fracture production performance of the horizontal well with coupled complex flow laws. However, the existing hydraulic fracture network extension and gas well production performance simulation are independent of each other, making it hard to capture the mutual dynamic response of mechanics and flow, thereby resulting in the lack of an effective coupled simulation technique.
In view of this, an objective of the present disclosure is to provide a method for a coupled simulation of hydraulic fracture network extension and production performance of a horizontal well in an unconventional oil and gas reservoir. The method of the present disclosure includes: establishing a complex hydraulic fracture network model of a fractured horizontal well in an unconventional oil and gas reservoir based on a fracture extension theory; constructing three-dimensional three-phase mathematical models of seepage for the fractured horizontal well based on an embedded discrete fracture model; and constructing a fully implicit numerical calculation model by a finite difference method through three-dimensional orthogonal grids, and solving iteratively, thereby accurately predicting a production performance characteristic of the fractured horizontal well in the unconventional oil and gas reservoir. The method of the present disclosure specifically includes the following steps:
S1: constructing, based on a displacement discontinuity method, a displacement discontinuity and stress relationship model of a fracture element and a fracture failure type criterion;
S2: constructing a numerical model for hydraulic fracture network extension of a horizontal well by comprehensively considering a reservoir's natural fracture distribution characteristic, and hydraulic fracture flow, extension and deformation, and acquiring, through iterative simultaneous solution, an extension shape and a spatial distribution characteristic of a hydraulic fracture network;
S3: generating a geological body of the horizontal well based on the extension shape and spatial distribution characteristic of the hydraulic fracture network, and performing spatial grid discretization by three-dimensional orthogonal grids;
S4: constructing, based on an embedded discrete fracture model, three-dimensional three-phase mathematical models of seepage for the horizontal well and a fully implicit numerical model based on a finite difference algorithm; and
S5: iteratively solving the constructed fully implicit numerical model, and predicting a post-fracture production performance characteristic of the horizontal well.
The present disclosure has the following beneficial effects:
1. By comprehensively considering the distribution characteristic of the natural fracture in the unconventional oil and gas reservoir, as well as the effects of proppant settlement and filtration of different components of the fracturing fluid during hydraulic fracturing, the present disclosure constructs a hydraulic fracture network extension model for the horizontal well, and realizes accurate prediction of the complex hydraulic fracture network extension shape.
2. Based on the extension characteristics of the hydraulic fracture, the present disclosure constructs the three-dimensional three-phase fully implicit numerical model of the fractured horizontal well by combining the finite difference method and three-dimensional orthogonal grids. The present disclosure realizes the coupled simulation of the hydraulic fracture network extension and production performance of the horizontal well in the unconventional oil and gas reservoir, and overcomes the shortcomings of the traditional independent hydraulic fracture network extension model and production performance prediction model.
To describe the technical features, objectives and beneficial effects of the present disclosure more clearly, the technical solutions of the present disclosure are described in detail below, but it should not be construed that the protection scope of the present disclosure is limited thereto. All other embodiments obtained by those of ordinary skill in the art based on the embodiments of the present disclosure without creative efforts should fall within the protection scope of the present disclosure.
The present disclosure is described in further detail below with reference to the drawings and embodiments.
(1) First, geomechanical parameters, natural fracture parameters and engineering parameters of the reservoir are input, and simulation is performed based on a fracture failure type criterion, to obtain the shape and spatial distribution characteristics of the hydraulic fracture network, as shown in
The specific parameters used in this embodiment are shown in Table 1.
(2) Spatial grid partition is performed on the extension shape of the generated hydraulic fracture network by using three-dimensional orthogonal grids. The total calculation area has a volume is 400×200×20 m3, and the length of the horizontal well section in the calculation area is 200 m. A five-section multi-stage hydraulic fracture is created through hydraulic fracturing, as shown in
(3) Based on the reservoir grid partition results are combined with the three-dimensional three-phase fully implicit numerical model of fractured horizontal well. The basic parameters of the model (Table 2), the pressure-volume-temperature (PVT) parameters (Table 3) of crude oil and natural gas, matrix permeability data (Table 4 and Table 5), and matrix capillary force data (Table 6) are brought to obtain the production performance data of the simulated well, and the post-fracture production performance characteristics of the horizontal well are predicted, as shown in
The present disclosure is described above with reference to the preferred embodiments, but those skilled in the art should understand that these embodiments are only intended to describe the present disclosure, rather than to limit the scope of the present disclosure. Further improvements of the present disclosure made without departing from the principle of the present disclosure should also be deemed as falling within the protection scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202110388522.3 | Apr 2021 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2022/084277 | 3/31/2022 | WO |