1. Field of the Invention
The present invention relates to a biosensor that has a surface with both a reference region and a sample region which were created in part by using a deposition technique such as printing or stamping. In one embodiment, the biosensor is incorporated within a well of a microplate.
2. Description of Related Art
Today a biosensor like a surface plasmon resonance (SPR) sensor or a resonant waveguide grating sensor enables an optical label independent detection (LID) technique to be used to detect a biomolecular binding event at the biosensor's surface. In particular, the SPR sensor and the resonant waveguide grating sensor enables an optical LID technique to be used to measure changes in refractive index/optical response of the biosensor which in turn enables a biomolecular binding event to be detected at the biosensor's surface. These biosensors along with different optical LID techniques have been used to study a variety of biomolecular binding events including protein-protein interactions and protein-small molecule interactions.
For high sensitivity measurements, it is critical that factors which can lead to spurious changes in the measured refractive index/optical response (e.g. temperature, solvent effects, bulk index of refraction changes, and nonspecific binding) be carefully controlled or referenced out. In chip-based LID technologies, this is typically accomplished by using two biosensors where one is the actual biosensor and the other is an adjacent biosensor which is used to reference out the aforementioned factors. Two exemplary chip-based LID biosensors include Biacore's SPR platform which uses one of 4 adjacent flow channels as a reference, and Dubendorfer's device which uses a separate pad next to the sensor pad for a reference. The following documents describe in detail Biacore's SPR platform and Dubendorfer's device:
An advantage of using these types of referencing schemes is exemplified by Biacore's S51, the newest and most sensitive SPR platform available today on the market. This instrument has significantly improved sensitivity and performance because of its improved referencing which is based on the use of so-called hydrodynamic referencing to minimize noise, temperature effects, drift, and bulk index of refraction effects within a single channel. However, the chip-based LID technologies require the use of flow cell technology and as such are not readily adaptable for use in a microplate.
Biosensors that are designed to be used in a microplate are very attractive because they are amenable to high throughput screening applications. However, the microplates used today have one well which contains a sample biosensor and an adjacent well which contains a reference biosensor. This makes it difficult to reference out temperature effects because there is such a large separation distance between the two biosensors. Moreover, the use of two adjacent biosensors necessarily requires the use of two different solutions in the sample and reference wells which can lead to pipetting errors, dilution errors, and changes in the bulk index of refraction between the two solutions. As a result, the effectiveness of referencing is compromised. In an attempt to address these issues, several different approaches have been described in U.S. Patent Application No. 2003/0007896, where simultaneous measurement of the optical responses of a single biosensor and different polarizations of light are used to reference out temperature effects. These approaches, however, are not easy to implement and cannot take into account and correct for bulk index of refraction effects and nonspecific binding.
In yet another approach, O'Brien et al. used a two-element SPR sensor on which there was a reference region that was created by using laser ablation in combination with electrochemical patterning of the surface chemistry. However, this approach is difficult to implement and is of limited applicability because it requires the use of metal substrates. A detailed description about the two-element SPR sensor reference and this approach is provided in an article by O'Brien et al. entitled “SPR Biosensors: Simultaneously Removing Thermal and Bulk Composition Effects”, Biosensors & Bioelectronics 1999, 14, 145-154.
As can be seen, there is a need for a biosensor that can be used in a microplate and can also be used to detect a biomolecular binding event while simultaneously referencing out temperature effects, drift, bulk index of refraction effects and nonspecific binding. This need and other needs are satisfied by the present invention.
The present invention includes a method where any one of several different deposition techniques (e.g. contact pin printing, non-contact printing, microcontact printing, screen printing, spray printing, stamping, spraying,) can be used to create a reference region and a sample region on a single biosensor which for example can be located within a single well of a microplate. The implementation of the methods used to create the reference region and the sample region on a surface of the biosensor include: (1) the selective desposition of a deactivating agent on a reactive surface of the biosensor; (2) the selective deposition of a target molecule (e.g. a protein) on a reactive surface of the biosensor; or (3) the selective deposition of an activating agent on an otherwise unreactive surface of the biosensor. The biosensor which has a surface with both the reference region and the sample region enables one to use the sample region to detect a biomolecular binding event and also enables one to use the reference region to reference out spurious changes that can adversely affect the detection of the biomolecular binding event
A more complete understanding of the present invention may be had by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:
In the second method, the surface 110 of the biosensor 100 is coated (step 2a) with a reactive agent 112. A target molecule 118 is then printed (step 2b) directly on a predefined area of the surface 110 which is coated with the reactive agent 112. Thereafter, the entire well 106 is exposed (step 2c) to a deactivating agent 116 to inactivate/block the unprinted regions of the surface 110 which are used as reference regions 102. This is another method that can be used to create the reference region 102 and the sample region 104 on a single biosensor 100.
In the third method, the surface 110 of the biosensor 100 is coated (step 3a) with a material that presents functional groups (such as carboxylic acid groups) that can be converted into reactive groups. In step 3b, a predefined region of the surface is made reactive by depositing an activating reagent such as 1-[3-(dimethylamino)propyl]]-3-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) thereon. Then, the whole well 106 is exposed to a solution that contains a target molecule 118 such that the target molecule 118 binds (step 3c) to the area of the surface 110 which was activated by printing the activating agent 112. The region of the surface 110 that does not have the attached target molecule 118 can be used as reference region 102. This is yet another method that can be used to create the reference region 102 and the sample region 104 on a single biosensor 100.
It should be noted that there are many different deposition techniques that can be used in the aforementioned methods. For instance, the deposition techniques can include: contact pin printing, non-contact printing (ink jet printing, aerosol printing), capillary printing, microcontact printing, pad printing, screen printing, silk screening, micropipetting, and spraying.
It should also be noted that one skilled in the art could use any one of the aforementioned methods to print multiple different spots on the surface 100 to form a reference area 102, positive/negative controls and/or multiple different target molecules nos. 1-2 (for example) inside the same well 106 of the microplate 108. An example of this scenario is shown at the bottom of
Following is a description about several experiments that were conducted to evaluate the feasibility of each of the three different methods of the present invention.
Referring to the experiments associated with the first method of the present invention, fluorescence assays and Corning LID assays were used to evaluate the feasibility of creating a reference (nonbinding) region 102 and a sample (binding) region 104 on a biosensor 100. Corning LID assays refer to assays performed using resonant waveguide grating sensors. In the first set of experiments, three different deactivating agents 116 (ethanolamine (EA), ethylenediamine (EDA), and O,O′-bis(2-aminopropyl)polyethylene glycol 1900 (PEG1900DA)) dissolved in borate buffer (100 mM, pH9) were printed in three different wells on a slide that was coated with a reactive agent 112 (poly(ethylene-alt-maleic anhydride (EMA)). The printing was done using a Cartesian robotic pin printer equipped with a #10 quill pin which printed an array of 5×7 individual spots (spaced 300 m apart) to create the printed (reference) region 102. The spots were printed close enough together such that they merged together to create a rectangular area. The wells were then incubated with a solution of biotin-peo-amine 118 which was used to evaluate the effectiveness of the printing process. It was expected that biotin 118 would bind only to the non-printed (sample) region 104 of the well. The wells were then exposed to a solution of cy3-streptavidin and imaged in a fluorescence scanner.
Another set of experiments were performed to investigate the influence that the concentration of the deactivating agent 116 has on performance. Use of too concentrated solution of a deactivating agent 116 could result in cross contamination into the unprinted (sample) region 104.
Yet another set of experiments were performed to demonstrate that (i) the use of a printed deactivating agent 116 within a well 106 does not negatively impact the subsequent immobilization of target molecules 118 on the unprinted (reactive) regions 112 and (ii) the use of a printed deactivating agent 116 works as well as a deactivating agent used in bulk solution. In these experiments, several wells 106 of a Corning LID microplate 108 (containing a thin Ta2O5 waveguide layer) were first coated with a reactive agent 112 (EMA). Then, a deactivating agent (PEG1900DA) 116 was printed on predefined areas of several of those wells 106 in the Corning LID microplate 108. As controls, additional wells 106 were either incubated with a solution of the same blocker 116 or left untreated. All wells 106 were then exposed to a solution of biotin-peo-amine 118, followed by incubation with cy3-streptavidin.
Additional experiments utilizing Corning LID microplates 108 were performed to demonstrate the advantages of using the present invention for intrawell referencing. In these experiments, the LID microplate 108 had several EMA coated wells 106 with a printed deactivating agent (PEG1900DA) 116. Biotin was then immobilized on the surface by incubation of the wells 106 with a solution of biotin-peo-amine. Thereafter, the microplate 108 was docked in a Corning LID instrument and the binding of streptavidin (100 nM in PBS) was monitored as a function of time. During the assay, the LID instrument continuously scanned across the bottom of each well 106/biosensor 100 to monitor the signals in the reference (nonbinding) region 102 and the sample (binding) region 104. For more details about the LID instrument, reference is made to the aforementioned U.S. patent application Ser. No. ______, filed concurrently herewith and entitled “Spatially Scanned Optical Reader System and Method for Using Same” (Attorney Docket No. SP04-149).
Following is a description about the experiments associated with the second method of the present invention. Again, in the second method of the present invention, the reference and sensing areas 102 and 104 within a single biosensor 100 are created by printing a target molecule 118 directly on a reactive surface 100, and then deactivating the rest of the surface 100 by treatment with a deactivating agent 116. An advantage of this method is the tremendous reduction in the volume of protein consumed (<˜1 nl) compared to immobilization of the protein using bulk solution (>˜10 ul).
To demonstrate the feasibility of this approach, BSA-biotin 118 (50 ug/ml, 100 mM borate pH9) was printed in several wells 106 of a Corning LID microplate 108. Each well 106 was then treated with ethanolamine 116 (200 mM in borate buffer, pH9), followed by incubation with cy3-streptavidin (100 nM in PBS).
Following is a description about the experiments associated with the third method of the present invention. Again, in the third method of the present invention, the reference and sensing areas 102 and 104 within a single biosensor 100 are created by printing an activating agent 112 (e.g. 1-[3-(dimethylamino)propyl]]-3-ethylcarbodiimide hydrochloride (EDC, Aldrich) and N-hydroxysuccinimide (NHS, Aldrich)) on an otherwise unreactive surface (e.g. a surface presenting carboxylic acid groups) to form a reactive, binding surface 104 for the attachment of target molecules 118.
To demonstrate this concept, an aqueous solution containing EDC (1 mM) and. NHS (1 mM) was printed on a hydrolyzed EMA surface in a well 106 of a microplate 108. The entire well 106 was then incubated with biotin-amine 118 and a cy3-streptavidin fluorescence binding assay was performed.
Some additional features and advantages of using a printing/stamping technique to create an intrawell reference for LID biosensors 100 in accordance with the present invention are described next.
1) A reference area created inside the same well can dramatically reduce or eliminate the deviations caused by temperature, bulk index of refraction effects, and nonspecific binding. Referencing out these effects using an intrawell reference is more effective relative to the use of an adjacent well as a reference.
2) An intrawell reference area reduces reagent consumption by eliminating the need to use separate reference (control) wells.
3) The printing/stamping techniques are scalable to manufacturing quantities of microplates.
4) Printing/stamping of target proteins can result in an ˜100-10,000× decrease in the amount of protein used relative to the immobilization of the protein using a bulk solution reaction.
5) The printing/stamping techniques can be applied to virtually any type of substrate that can be used to make a surface on a biosensor.
6) A second detection method can also be incorporated to provide more detailed information for the biomolecular binding such as mass spectrometry.
Although several embodiments of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it should be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth and defined by the following claims.
This application is related to U.S. patent application Ser. No. ______ filed concurrently herewith and entitled “Spatially Scanned Optical Reader System and Method for Using Same” (Attorney Docket No. SP04-149) which is incorporated by reference herein.