Method for creating interference, and jamming arrangement.
The present invention relates to a method for creating interference within an area, over which a plurality of jammers are distributed and form a group in which each of the jammers can be arranged to transmit a jamming signal, and in which communication is established between the jammers comprised in the group. The invention also relates to a jamming arrangement comprising a plurality of communicating jammers intended to be distributed over an area, each of which jammers comprises a transmitter, a receiver and a logic unit.
Traditionally, jammers are currently to be found in the form of vehicle-mounted electronic units with associated directional antennas that are directed towards the area that is to be exposed to jamming signals. The jammers utilize high outputs in order to achieve a long range. The position of such conventional jammers is easy to determine by taking bearings and the position of the jammer can be regarded as having been disclosed when the jamming commences. In addition, the traditional jammers that are located at a great distance from the target objects that are to be jammed have a low efficiency, as the electromagnetic radiation from these jammers decreases with distance and hence the electromagnetic radiation that is transmitted with a high output must travel a long way before the radiation acts as interference on the target object. In addition, these conventional jammers are difficult to construct and expensive to maintain on account of the high output that has to be able to be handled. Conventional jammers are vulnerable in the sense that the whole ability to jam can be disabled by a single strike.
It can also be the case that jammers are fired out or placed in some other way into an area that is to be jammed. The distributed transmitters disclose their position when transmitting commences and if several jammers are arranged within a limited area, there is normally no provision for coordinating the jamming functions.
However, jamming arrangements have recently been proposed with several coordinated jammers, see U.S. Pat. No. 6,414,622 B1. According to the said US patent, a plurality of jammers is in contact with and under the control of a sensor via data links. Such an arrangement is less vulnerable than the conventional jammers, as the arrangement can be regarded as being able to maintain a certain degree of functionality even if one jammer is disabled. A weakness in the arrangement is, however, the dependency on the sensor and hence the lack of autonomy for the jammers. If the sensor or its data link to the jammers is disabled, the whole installation will be disabled.
The object of the present invention is to provide a method and an arrangement that does not have the defects mentioned above. The object of the invention is achieved by means of a method for creating interference within an area, characterized in that communication is established directly between the jammers comprised in the arrangement and in that the information that is transferred from one jammer to other jammers is superposed on the jamming signal produced by the jammer, and a jamming arrangement characterized in that the transmitters comprise an information-superposing unit for superposing information on the jamming signal produced by a transmitting jammer for transmission between communicating jammers.
By setting up direct communication between individual jammers and transmitting information between jammers comprised in the arrangement in the jamming signal, a method and an arrangement are proposed that have many advantages in comparison with previously-known methods and jamming arrangements. The proposed jammer arrangement is difficult to attack and difficult to locate by taking bearings. The arrangement has redundancy in the sense that one disabled jammer does not affect the whole jamming function. Due to the interaction of several distributed jammers, locating a jammer by taking bearings can be made more difficult. In comparison with the traditional jammers, an improved jamming effect is achieved as the source of interference can be positioned closer to the target. Other effects are improved energy-efficiency and an advantageous power/distance ratio. Another valuable aspect is that the arrangement is easy to adapt to different protection requirements, as it is possible to vary the number of jammers comprised in the arrangement as required, without having to modify the arrangement. The arrangement is thereby easy to adapt to a planned area that is to be jammed.
According to an advantageous embodiment of the method, information is superposed on the jamming signal produced by the jammer by modulating the jamming signal. According to another advantageous embodiment of the method, when the jamming signal consists of jamming pulses, the superposed information affects the characteristics of the jamming pulses with regard to amplitude, pulse length and/or distance between pulses.
According to another advantageous embodiment of the method, one of the jammers in the group is allocated a master function. Alternatively, according to yet another advantageous embodiment of the method, all the jammers in the group of jammers can initially be allocated a slave function with the possibility of one of a plurality of jammers later changing to a master function, in response to other jammers comprised in the group of jammers.
According to a preferred method, the jammers are distributed by being fired out. In this way, jammers can be distributed over a suitable area quickly and with few risks. The distribution of the jammers can advantageously be carried out by means of a shell.
As communication is set up directly between the jammers comprised in the arrangement, a network is created in which the individual jammers are able to obtain information about how the other jammers are acting. The various jammers can thereby be arranged to transmit at different times and in this way can mislead any attempt to locate them by taking bearings. An advantageous embodiment of the method is characterized in that information transferred between jammers is utilized for controlling the transmission of jamming signals by the jammer that receives the information.
According to an advantageous embodiment of the jamming arrangement, jammers comprised in the arrangement comprise a jamming pulse generator, for generating jamming signals in the form of jamming pulses, and a modulator that is comprised in the information-superposing unit and acts upon the jamming pulse generator.
The receiver in the jammer suitably comprises a detector for detecting information superposed on the received jamming signal. The detector can comprise a demodulator and it is proposed that, in the transmitter arrangement, the receiver will comprise a dynamic damping unit that is arranged before the detector in the path taken by the signal. The damping unit effectively protects the receiver from high levels of incoming signals.
The invention will be described below schematically and for the purpose of exemplification, with reference to the attached drawings in which:
a shows schematically the construction of a transmitter comprised in a jammer.
b shows an example of an emitted jamming signal.
a shows schematically the construction of a receiver comprised in a jammer.
b shows an example of a received jamming signal.
A proposed embodiment of the jamming arrangement comprises a plurality of jammers shown schematically in
As shown in
In the following, it is described in somewhat greater detail how the jammer arrangement can be constructed and two preferred functional principles are illustrated.
Each jammer or jamming node referred to below is used to designate the physical unit that comprises a transmitter 5 and a receiver 6. In a network, one jamming node functions initially as a jammer and the other jamming nodes function as receivers. The jamming node that initially sends information is called the master. The allocation of the master function can be carried out in various ways. According to one way, a jamming node is pre-programmed to be the master. According to another way, the master is determined on the basis of an algorithm. The other jamming nodes are called slaves and monitor the information that the master sends and act on the basis of this information. If a master is disabled, a slave can undertake to function as master. Each slave has suitably an integral function enabling it to become master if no signal has been received within a certain period of time that is selected at random for each individual slave.
A master can send information to the surrounding jamming nodes with information about how they are to act. The master can be pre-programmed with which jamming nodes are located in the vicinity and it is also possible for the jamming node that is the master to request the other jamming nodes to identify themselves. Depending upon the current situation, the jamming node that is the master thereafter determines how the jamming network that has been established is to function. Each jamming node has suitably an address that is used to designate the identity of the jamming node and information for a master about when a message is addressed to a jamming node.
a shows a schematic example of a construction of the transmitter 5 in a jammer. The transmitter 5 comprises a modulator 11 connected to a jamming pulse generator 12. The jamming pulse generator 12 is connected to the antenna 8 via the change-over switch 9. The information that is sent is modulated, for example by pulse modulation. The system in the jamming node that generates the jamming pulses, that is here the jamming pulse generator 12, is controlled by the modulator 11 and superposes information on the jamming pulses.
An example of a jamming signal generated by the transmitter as a function of the time is shown in
a shows a schematic example of a construction of the receiver 6 of a jammer. The receiver comprises a detector or demodulator 17 and a dynamic damping circuit 18 arranged on the input side of the detector. An antenna 8 that is common to the jammer is connected to the dynamic damping circuit 18 via a change-over switch 9. An incoming jamming signal that is received by the antenna 8 in the jammer is taken to the receiver 6 in the jammer via the change-over switch 9. In order to protect the detector 17 in the receiver from high signal powers, the incoming jamming signal has to pass through the dynamic damping circuit 18 before it reaches the detector 17. The detector 17 interprets the received jamming signal by demodulating the information content in the jamming signal. The information content is thereafter communicated to the logic unit 7 in the jammer for further evaluation.
An example of the appearance of an incoming jamming signal received by the antenna 8 is shown in
Two different proposed functional principles are described below.
For principle I, it is the case that a number of jammers or jamming nodes are distributed in a random way, with one of the jamming nodes being selected as the master and having knowledge of which slaves are in the vicinity. According to this principle, the following takes place:
For principle II, it is the case that a number of jammers or jamming nodes have been distributed in a random way. No master is initially selected and all the jamming nodes have a “silent” period after they have been distributed.
The jamming signal arrangement shown in
The invention is not limited to the embodiments described above as examples, but can be modified within the framework of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
0600156-4 | Jan 2006 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2007/000054 | 1/23/2007 | WO | 00 | 7/25/2008 |