Method For Cutting Braking Surface of Wheel Bearing Device Equipped With Brake Rotor

Information

  • Patent Application
  • 20080134847
  • Publication Number
    20080134847
  • Date Filed
    August 26, 2005
    19 years ago
  • Date Published
    June 12, 2008
    16 years ago
Abstract
In cutting the braking surface (13a) of a brake rotor-equipped wheel bearing device (A) which comprises an outer member (1) having a car body attaching flange (4) in the outer periphery, an inner member (2) having a wheel attaching flange (6) in the outer periphery, a plurality of rows of rolling bodies (3) incorporated between the two members (1, 2) and rotatably supporting the inner member (2), and a brake rotor (13) attached to the wheel attaching flange (6), the cutting is performed such that subsequently to assembling the wheel bearing device in its mounted state, the end surface of a wheel pilot (9) formed in the inner member (2) is finish-cut, and then the brake rotor (13) is attached to the wheel attaching flange (6), whereupon the braking surface (13a) of the brake rotor (13) is cut with the outer diameter of the wheel pilot (9) gripped relative to the end surface of the wheel pilot (9).
Description
TECHNICAL FIELD

This invention relates to a method for cutting the braking surface of a brake rotor attached to the flange of a wheel bearing device.


BACKGROUND ART

Wheel bearing devices for automobiles are in two types: One for driving wheels and the other for non-driving wheels. At any rate, in wheel bearing devices, the planar runout of the braking surface occurring during the rotation of the brake rotor causes brake judder during the brake application, and hence high cutting accuracy and high dimensional accuracy are required in the individual parts of the wheel bearing device. Even if the cutting accuracy in individual parts is enhanced, however, not only do the cutting errors in the individual parts accumulate during the assembling of the wheel bearing device, but also assembling errors occur, so that the planar runout of the braking surface of the brake rotor cannot be suppressed.


To eliminate such drawback, there have already been proposed methods for cutting the braking surface, comprising mounting on a cutting machine a brake rotor-equipped wheel bearing device assembled in its mounted state and rotating the brake rotor with the brake rotor-equipped wheel bearing device supported in its mounted state (Japanese Unexamined Patent Publication H11-19803, Japanese Unexamined Patent Publication 2000-356233, and U.S. Pat. Nos. 6,158,124 and 6,247,219.


According to the cutting methods, since the braking surface of the brake rotor is cut with the brake rotor-equipped wheel bearing device held in its mounted state, accumulative errors in the form of accumulative cutting errors in the individual parts, and strains produced during the fixing of the brake rotor are eliminated by cutting. Consequently, assembling the brake rotor-equipped wheel bearing device having undergone cutting, to an actual car results in the brake rotor-equipped wheel bearing device being restored to its state of having undergone cutting, the planar runout of the braking surface occurring during the rotation of the brake rotor being very little, enabling the brake rotor to rotate with extremely high accuracy.

    • [Patent Citation 1] Japanese Unexamined Patent Publication H11-19803
    • [Patent Citation 2] Japanese Unexamined Patent Publication 2000-356233
    • [Patent Citation 3] U.S. Pat. No. 6,158,124
    • [Patent Citation 4] U.S. Pat. No. 6,247,219


DISCLOSURE OF THE INVENTION
Problems to be Solved by the Invention

Conventional cutting methods for cutting the braking surface of the brake rotor with a brake rotor-equipped wheel bearing device held in its mounted state are cutting methods which are intended to suppress the planar runout of the braking surface occurring during the rotation of the brake rotor and to prevent vibrations from occurring during the brake application, and which are so arranged that, of inner and outer members relatively rotating through rolling bodies, the inner member is fixed, in which state the braking surface of the brake rotor assembled to the inner member is cut; thus, the rolling body contact surfaces are deformed during the cutting load application, which deformation causes deflections in the bearing rotation axis and cutting axis, resulting in the planar runout accuracy being degraded by an amount corresponding to the deflections.


An object of the invention is to provide a method for cutting the braking surface of a brake rotor-equipped wheel bearing device more highly accurately and efficiently.


Means for Solving the Problem

A method for cutting the braking surface of a brake rotor-equipped wheel bearing device according to the invention comprises an outer member having a car body attaching flange in the outer periphery, an inner member having a wheel attaching flange in the outer periphery, a plurality of rows of rolling bodies incorporated between the two members and rotatably supporting the inner member, and a brake rotor attached to the wheel attaching flange, the method further comprising a first process in which subsequently to assembling the wheel bearing device in its mounted state, the end surface of a wheel pilot formed in the inner member is finish-cut, and a second process in which the brake rotor is then attached to the wheel attaching flange, whereupon the braking surface of the brake rotor is cut with the wheel pilot outer diameter gripped relative to the end surface of the wheel pilot.


The first process comprises, for example, the following steps.


a. Assembling the wheel bearing device in its state prior to having the brake rotor attached thereto.


b. Using a chuck device to nonrotatably support the outer member in such a manner that the car body attaching surface of the car body attaching flange is used as a reference surface, and the reference surface is positioned.


c. Inserting a spline shaft in a spline hole in a hub ring, and threadedly engaging a nut with the threaded portion of the front end thereof to tighten it with a pressing force corresponding to the tightening force associated with the mounted state.


d. With the pressing state held as it is, rotating the spline shaft, thereby imparting torque to the inner member to rotate the latter around the axis of the wheel bearing device, cutting the end surface of the wheel pilot while providing a feed to a cutting tool.


The second process comprises, for example, the following steps.


e. Attaching the brake rotor to the wheel attaching flange of the wheel bearing device having undergone the first process, thus completing the brake rotor-equipped wheel bearing device.


f. Gripping the outer periphery of the wheel pilot by the chuck device relative to the end surface of the wheel pilot.


g. Rotating the inner member to cut the braking surface of the brake rotor while providing a feed to the cutting tool.


Effect of the Invention

Performing the finish cutting of the end surface of the wheel pilot of the hub ring after the assembling of the wheel bearing device suppresses the axial runout of the end surface of the wheel pilot irrespective of the dimensional errors or assembling errors in the individual parts. Next, the braking surface of the brake rotor is cut by attaching the brake rotor to the wheel bearing device and gripping the outer diameter of the wheel pilot relative to the end surface of the wheel pilot; thus, highly accurate cutting is made possible while suppressing the planar runout of the braking surface of the brake rotor, without binding the outer member.


Therefore, according to the invention, since the rotation runout of the braking surface of the brake rotor can be minimized, it is possible to improve the rotation accuracy of the bake rotor in the mounted state and suppress occurrence of brake judder during the brake application.





BRIEF DESCRIPTION OF THE DRAWINGS

[FIG. 1] A longitudinal sectional view for explaining a first process of the cutting method of the invention.


[FIG. 2] A longitudinal sectional view for explaining a second process of the cutting method of the invention.


[FIG. 3] A longitudinal sectional view of a brake rotor-equipped wheel bearing device for driving wheels.


[FIG. 4] A longitudinal sectional view of a brake rotor-equipped wheel bearing device for non-driving wheels.





DESCRIPTION OF THE REFERENCE CHARACTERS

A Brake rotor-equipped wheel bearing device


Outer member

    • 4 Car body attaching flange
      • 4a (Reference surface)
    • 5 Raceway



2 Inner member

    • 2a Hub ring
      • 6 Wheel attaching flange
      • 7 Raceway
      • 9 Wheel pilot
      • 11 Spline hole
    • 2b Raceway ring
      • 12 Raceway



13 Brake rotor

    • 13a Braking surface



15, 18 Chuck devices



16 Spline shaft



17 Nut


B, C Cutting tools


BEST MODE FOR CARRYING OUT THE INVENTION

First, before describing a cutting method, a brake rotor-equipped wheel shaft bearing device, which is a subject of cutting, will be described.



FIG. 3 shows an example of a brake rotor-equipped wheel bearing device for driving wheels. This brake rotor-equipped wheel bearing device A comprises an outer member 1 corresponding to a bearing outer ring, an inner member 2 corresponding to a bearing inner ring, and rolling bodies 3 interposed between the two members 1 and 2.


The outer member 1 is provided with a flange in the outer periphery for attaching the outer member to a car body, i.e., a car body attaching flange 4, and is formed with two raceways 5 in the inner periphery.


The inner member 2 consists of a hub ring 2a and a bearing ring 2b The hub ring 2a has a wheel pilot 9 formed in the end on the outboard side appearing on the right-hand side of FIG. 3, and a small diameter section 10 formed in the end on the inboard side or the opposite side. A spline hole 11 extends through the hub ring 2a from the bottom surface of the wheel pilot 9 to the end surface on the inboard side. The outer periphery of the outboard end of the hub ring 2a is provided with a flange for attaching a wheel, i.e., a wheel attaching flange 6. The wheel attaching flange 6 has a plurality of hub bolts 8 attached thereto. The intermediate outer periphery of the hub ring 2a is formed with a raceway 7.


The bearing ring 2b is fitted on the small diameter section 10 of the hub ring 2a. The outer periphery of the bearing ring 2b is formed with a raceway 12. The raceway 7 of the hub ring 2a and the raceway 12 of the bearing ring 2b correspond to the two raceways 5. Rollably disposed between the raceways 5 of the outer member 1 and the raceways 7 and 12 of the inner member 2 (the hub ring 2a and bearing ring 2b) are two rows of rolling bodies 3, supporting the outer and inner members 1 and 2 for relative rotation.


Seals S are mounted at the opposite ends between the opposed surfaces of the outer and inner members 1 and 2. The seals S prevent foreign matter from entering the bearing and also prevent grease filled in the bearing from leaking.


In the thus-arranged wheel bearing device, when it is to be assembled to an actual car, the car body attaching flange 4 of the outer member 3 is attached to the car body by bolting. Further, the spline shaft provided in the outer joint member of a constant velocity joint is inserted in the spline hole 11 in the hub ring 2a. Then, a nut is threadedly engaged on a threaded shaft formed at the front end of the spline shaft and tightened with standard torque, so as to axially press the hub ring 2a and bearing ring 2b, thereby imparting a preload to the bearing. Further, the brake rotor 13 and a wheel (not shown) are attached to the hub bolt 8 provided on the wheel attaching flange 6, and a wheel nut 14 is tightened.


Next, the method for cutting the braking surface 13a of the brake rotor 13 in the brake rotor-equipped wheel bearing device A will be described. The cutting method in this embodiment comprises a first process and a second process.


The first process is as shown in FIG. 1. It comprises assembling the wheel bearing device in its mounted state before the brake rotor is attached thereto, and using the chuck device 15 to nonrotatably support the outer member by positioning a reference surface provided by the attaching surface 4a of the car body attaching flange 4 with respect to the car body. And, this is followed by inserting the spline shaft 16 in the spline hole 11 in the hub ring 2a, and threadedly engaging the nut 17 on the threaded section at the front end to tighten the nut with a pressing force corresponding to the tightening force associated with the mounted state.


With the pressing state held as it is, rotating the spline shaft 16, thereby imparting torque to the inner member 2 to cause the latter to rotate around the rotation axis of the wheel bearing device, cutting the end surface of the wheel pilot 9 while feeding a cutting tool B as indicated by a white arrow. This cutting makes it possible to sufficiently reduce the axial runout of the end surface of the wheel pilot 9 during the rotation of the wheel bearing device irrespective of the dimensional errors or assembling errors in the individual parts.


The second process is as shown in FIG. 2. It comprises attaching the brake rotor 13 to the wheel attaching flange 6 of the wheel bearing device having undergone the first process. Then, the thus-arranged brake rotor-equipped wheel bearing device A is gripped by using the chuck device 18, which grips the outer periphery of the wheel pilot 9, relative to the end surface of the wheel pilot 9. In this state, the inner member 2 is rotated to cut the braking surface 13a of the brake rotor 13 while feeding a cutting tool C.


According to the cutting method in this embodiment, the first process makes it possible to secure the end surface of the wheel pilot 9 while extremely improving the axial planar runout accuracy with respect to the rotation of the wheel bearing device, and the second process, on the basis of this result, cuts the braking surface 13a of the brake rotor 13; therefore, the axial planar runout of the braking surface 13a of the brake rotor 13 with respect to the rotation of the wheel bearing device can be minimized.


Further, strains produced when the brake rotor 13 is fixed to the wheel attaching flange 6 are also removed. Further, in the conventional system, since the braking surface 13a of the brake rotor 13 is cut with the outer member 1 fixed, the rolling body contact surfaces are deformed under the cutting load, which deformation causes deflections in the bearing rotation axis and cutting axis, resulting in a phenomenon in which the planar runout accuracy correspondingly degrades. In contrast, the cutting method in this embodiment does not bind the outer member 1 when cutting the braking surface 13a of the brake rotor 13; therefore, deflections hardly occur in the bearing rotation axis and cutting axis, so that correspondingly high accuracy cutting is possible.


Although a wheel bearing device has been described by citing, as an example, one used for driving wheels which has the spline hole 11 in the inner member 2 (hub ring 2a), the wheel bearing device may be one used for non-driving wheels, as shown in FIG. 4.

Claims
  • 1. A method for cutting the braking surface of a brake rotor-equipped wheel bearing device which comprises an outer member having a car body attaching flange in the outer periphery, an inner member having a wheel attaching flange in the outer periphery, a plurality of rows of rolling bodies incorporated between said two members and rotatably supporting the inner member, and a brake rotor attached to said wheel attaching flange, said method further comprising a first process in which subsequently to assembling the wheel bearing device in its mounted state, the end surface of a wheel pilot formed in the inner member is finish-cut, and a second process in which the brake rotor is then attached to the wheel attaching flange, whereupon the braking surface of the brake rotor is cut with the wheel pilot outer diameter gripped relative to the end surface of the wheel pilot.
  • 2. A method as set forth in claim 1, wherein the first process comprises the following steps: a. Assembling the wheel bearing device in its state prior to having the brake rotor attached thereto.b. Using a chuck device to nonrotatably support the outer member in such a manner that the car body attaching surface of the car body attaching flange is used as a reference surface, and said reference surface is positioned.c. Inserting a spline shaft in a spline hole in a hub ring, and threadedly engaging a nut with the threaded portion of the front end thereof to tighten it with a pressing force corresponding to the tightening force associated with the mounted state.d. With the pressing state held as it is, rotating the spline shaft, thereby imparting torque to the inner member to rotate the latter around the axis of the wheel bearing device, cutting the end surface of the wheel pilot while providing a feed to a cutting tool.
  • 3. A method as set forth in claim 1, wherein the second process comprises the following steps: e. Attaching the brake rotor to the wheel attaching flange of the wheel bearing device having undergone the first process, thus completing the brake rotor-equipped wheel bearing device.f. Gripping the outer periphery of the wheel pilot by the chuck device relative to the end surface of the wheel pilot.g. Rotating the inner member to cut the braking surface of the brake rotor while providing a feed to the cutting tool.
  • 4. A method as set forth in claim 2, wherein the second process comprises the following steps: e. Attaching the brake rotor to the wheel attaching flange of the wheel bearing device having undergone the first process, thus completing the brake rotor-equipped wheel bearing device.f. Gripping the outer periphery of the wheel pilot by the chuck device relative to the end surface of the wheel pilot.g. Rotating the inner member to cut the braking surface of the brake rotor while providing a feed to the cutting tool.
Priority Claims (1)
Number Date Country Kind
2005-044003 Feb 2005 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP05/15556 8/26/2005 WO 00 10/18/2007