a. Field of Invention
The invention relates to a method for deflecting a sheet of warps when weaving on a weaving machine, and to a weaving machine.
b. Discussion of Related Art
In order to increase the tension within a sheet of warps when beating a filling against a fabric's beatup line, it is known (U.S. Pat. No. 1,749,123) to deflect a sheet of warps using a bar-shaped support element extending across the weaving machine's width. This support element is associated within the so-called back shed with the lower sheet of warps, that is it is situated relative to shed-forming devices on the side facing the warp beam, and it is powered by a drive powered by the batten's drive. As a result the support element's motion is synchronized with the batten's motion.
The objective of the present invention is improving a method and a weaving machine of the initially described type in a manner to attain higher quality of the manufactured fabric.
This goal is attained by deflecting the sheet of warps between a beatup line for a fabric to be woven and shed-forming devices.
As a result of deflecting the sheet of warps in the segment between the beatup line and the shed-forming devices, said sheet of warps may be moved into a position different from that position caused by the shed-forming devices. This change in position enables influencing the fabric quality.
In an embodiment of the present invention, the deflection of the sheet of warps takes place at variable times and/or over variable time intervals and/or along different paths within one weaving cycle. Thereby the segment of the sheet of warps that adjoins the beatup line may be moved at predetermined times within a weaving cycle into a predetermined position that is independent of the position of the shed-forming devices. The motion may be selected freely and be predetermined. Illustratively such a motion is independent of that of the batten and/or the shed-forming devices and it may be selected in relation to the weaving machine's operational speed.
In an embodiment of the invention, the warps are deflected into a predetermined position when a filling is beaten against the fabric. It is assumed that filling beatup and hence fabric formation runs uniformly so that thereby fabric quality shall be improved by predetermining the position of a sheet of warps in the vicinity of the fabric during filling beatup. Said predetermined position may be selected in such a way that a filling shall be beaten against the fabric in problem-free manner, whereby a full fabric, a heavy fabric or a high-density fabric such as denim for instance may be woven. Such improved filling beatup also offers the advantage that so-called starting marks can be averted. Said starting marks may occur in a fabric if the fillings are beaten at irregular heights against the fabric, in particular at a location at which the weaving machine restarts following shutdown.
In a further embodiment of the present invention, the warps are kept over a predetermined time interval during beatup in a deflected position. In this manner the additionally tensioned sheet of warps also will be kept in a predetermined position during filling beatup, enhancing problem-free beatup against the fabric. In this manner the invention is especially appropriate for weaving the above mentioned weaves.
Preferably the warps are deflected substantially as far as a plane of crossing during beatup, the sheets of warps crossing each other in said plane when there is change of sheds. The resulting increase in tension and the position assumed by the sheet of warps offer advantages regarding problem-free filling beatup. Moreover the position near the plane of crossing is advantageous to avoid catching the warps when the sheets of warps are crossing.
In a further embodiment of the present invention, the sheet of warps shall be deflected into a predetermined position while accessory elements are being inserted through said sheet into a shed. Once the sheet of warps is in a predetermined position, the accessory elements to be inserted, for instance relay nozzles of airjet looms or hooked guides for gripper looms, may be configured in a way that they might be moved through said sheet of warps without damaging the warps
In yet another embodiment of the present invention, the deflection of the sheet of warps is matched in such manner to the motion of the associated shed forming devices that the warps in said sheet are kept tensioned during opening or closing a shed.
With respect to a weaving machine, the objective of the invention is attained in that the deflection means are located between a fabric's beatup line and the shed forming devices. In this way it is possible not only to adjust the tension in the sheet of wraps, but also the position of the segment of the sheet of warps which adjoins the beatup line.
The invention is implemented by lifting the deflecting means with a controlled drive. Consequently the motion of the deflecting means may be as desired and matched to the motion of the batten and/or to that of the shed forming devices, and also they may be phase-shifted relative to these motions.
In a further embodiment of the present invention, the deflecting means include a frame guided in a guidance block that furthermore also guides harnesses. This embodiment is especially advantageous because such guide blocks are likely to be already included in the weaving machine. The present invention includes exploiting this advantage offered by the deflecting means also when said means are configured between the shed forming devices or even in the back shed. In such a case the specific sheet of warps lends itself only to being tensioned, however the advantage of the invention, namely the advantageous configuration of the deflecting means, is retained. It is easily feasible also to fit extant weaving machines with deflecting means, for instance said means being used instead of a harness, or by one guide for the frame of the deflecting means being added to the already extant guide blocks.
Further features and advantages of the present invention are elucidated in the following description of the embodiment modes shown in the drawings and in the dependent claims.
The weaving machine schematically shown in
In this illustrative embodiment, the shed 45 is defined by four warp sheets 1, 2, 3 and 4 with which are associated shed forming devices in the form of harnesses 13, 14, 15, 16. Each harness 13, 14, 15, 16 consists of a frame with a plurality of heddles 17 configured between the frame's cross legs and each fitted with one thread eye 27 guiding one warp. The number of warp sheets 1 through 4 corresponds to the number of harnesses 13 through 16.
The weaving machine also is fitted with means 18 deflecting a specific warp sheet 2, in this embodiment the lower warp sheet. This means 18 is mounted between the beatup line 7 of the fabric 8 and the shed forming devices, preferably at a location between the reed 12 and the harnesses 13 through 16. This means 18 is a rod in this particular embodiment and runs transversely to the direction of advancement of the warps, said rod being mounted between the side legs 20, 21 of a frame 19 (FIG. 2). The side legs 20, 21 are connected by an upper cross leg 22 and a lower cross leg 23, whereby the shape of the frame 19 corresponds to the frame of the harnesses 13 through 16. The rod of the deflecting means 18 is linked by connecting elements 24 to the lower cross leg 23 of the frame 19. The frame 19 of the means 18 deflecting the lower warp sheet 2 is guided by its side legs 20, 21 in guides 25 shown in FIG. 3. These guides 25 are situated on both sides of the frame 19 and are contained in a guide block 26 also containing further guides 28 through 33 for harnesses 13 through 16. In this particular embodiment, the guide block 26 contains seven identical guides 25, 28 through 33, though there are only four harnesses 13 through 16. The guide 25 is located in the ends of the guide blocks 26 facing the reed 12. The means 18 deflecting the specific lower sheet of warps, namely the warp sheet 2 in
Thereupon the harness 15 continues its descent while the harness 14 continues its rise. The deflecting means 18 initially moves downward somewhat more slowly than the harness 15, and as a result the tension in the warp sheet 3 rises rapidly so that the warp sheets 2 and 3 may be separated quickly and a clear shed 45 shall be formed (FIG. 6). Next the deflecting means 18 descends more rapidly than the harness 15 and as a result the means 18 disengages from the warp sheet 3 when the harness 15 assumes its lower position (FIG. 7). This feature offers the advantage that the warp tension in the warp sheet 3 shall not be increased by the deflecting means 18 when said sheet has assumed its lowermost position.
In similar manner and during subsequent weaving cycles, each time another harness, for instance in sequence the harness 13, the harness 16 and then again the harness 14 shall be moved into a lower position while the harness 15 remains in the upper position. Thereafter illustratively the operation shown in
As regards the illustrative embodiment of
In the illustrative embodiment of
When using an independent drive for the deflecting means 18, for instance the linear motor 49 of
As further shown in
Besides the means 18 deflecting the lower sheet of warps, the embodiment of
More than two means 18, 55 and the associated drive and guide elements may also and readily be used for purposes of deflection. As regards weaving machines, however, advantageously the harnesses shall be configured as close as possible to the beatup line 7 and accordingly it will be most advantageous as a rule to implement deflection only by means 18.
It is understood that the scope of the activity of the means 18 or 55 deflecting the lower sheet of warps may extend beyond the time of filling beatup or the insertion of an accessory element 48 through the sheet of warps into a shed. The deflecting means may also be advantageously actuated at other times within a weaving cycle, and the lower sheet of warps thus may be moved into a predetermined position. For instance the deflecting means 18 or 55 may be used to move the segment 46 of the lower sheet of warps into a position which is especially well suited to insert the filling into the shed. This case applies in particular to gripper looms wherein a gripper tape is guided between the fabric 8 and the reed 12 on the segment 46 of the lower sheet of warps while the reed 12 is situated in a position near the harnesses 13 through 16.
The invention moreover includes warp-deflecting means that are configured between the harnesses. On one hand this embodiment of the present invention allows increasing the tension in the sheet of warps, especially during filling beatup, but on the other hand the lower sheet of warps cannot be moved within the zone of the beatup line into a position that is independent of the shed forming devices. Furthermore, means deflecting a sheet of warps may be mounted on that side of the guide block 26 which faces the back beam 6. In this latter case also only the tension in the sheet of warps may be changed, however the advantage is obtained that the guides 25, 28 through 33 of a guide block 26 also may be used for the deflecting means if said deflecting means are designed corresponding to harnesses.
If the weaving machine's shed formation is implemented using a Jacquard system, where the warps are guided individually using harness ties and thread eyes, and where they may be raised and lowered individually, means 18 and 25 also may be used to deflect the lower sheet of warps. Said means then are advantageously configured between the fabric's beatup line and the region of the harness ties. Illustratively this design comprises a shortened guide block with guides 25 and/or 28 in said region.
If during weaving the lower sheet of warps is not raised at each beatup or filling insertion, there will be the danger that the means 18 deflecting the warps of the lower warp sheet shall excessively tension the warps and might rupture warp threads. In this case the deflection may be limited and eliminated after each beatup. The invention is preferably applicable to weaving machines that weave with the aforementioned 3/1 mode, as well as 1/1 mode, a 2/1 mode, a 4/1 mode or in general in a n/1 mode, that is, such that at each beatup or filling insertion the lower sheet of warps shall be moved upward.
It may be advantageous as illustrated in
The deflecting means 57 is powered by a drive 58 connected to a control unit 37. Linear motors, compressed-air cylinders or other drive elements may be used as drives. The means 57 is mounted between the beatup line 7 of the fabric 8 and the shed forming devices 13 through 16. In an especially advantageous manner, said means 57 acts on the upper sheet of warps in a position between the beatup line 7 of the fabric 8 and the back-pivoted reed 12. Obviously the means 57 must be moved out of the path of the reed 12 at filling beatup.
The aforementioned illustrative embodiments are especially well suited for n/1 weaves. However the invention also may be applied in modified form for 1/n weaves, in which case the upper sheet of warps shall be deflected appropriately by means operating like the means 18 and/or 55 which act from above on such a sheet of warps. In such a case furthermore means operating like the means 57 also may be assigned to the lower sheet of warps.
High-quality fabrics may be manufactured using the method of the invention and the weaving machine of the invention. The means deflecting the sheet(s) of warps may be integrated in problem-free manner into any machine. Few problems are to be expected in retrofitting extant machinery. Clearly too, the present invention is not restricted to the shown and described illustrative embodiments. Obviously the illustrative embodiments may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2000/0120 | Feb 2000 | BE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP01/01516 | 2/12/2001 | WO | 00 | 8/13/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/59192 | 8/16/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1749123 | Benson | Mar 1930 | A |
3727646 | Mares et al. | Apr 1973 | A |
3848642 | Steiner | Nov 1974 | A |
3943976 | Serrallonga Vilaseca | Mar 1976 | A |
4122871 | McGinley | Oct 1978 | A |
4253498 | Luchi | Mar 1981 | A |
4425946 | McGinley | Jan 1984 | A |
5014756 | Vogel et al. | May 1991 | A |
5174341 | Steiner et al. | Dec 1992 | A |
Number | Date | Country |
---|---|---|
0 350 447 | Jan 1990 | EP |
2 086 424 | Dec 1971 | FR |
56-78888 | Jun 1981 | JP |
Number | Date | Country | |
---|---|---|---|
20030019534 A1 | Jan 2003 | US |