This invention relates in general to methods for ballasting floating platforms at offshore well sites, and in particular to a method for deploying pre-installed lines for pulling the floating vessel down to a desired ballast level.
Offshore floating platforms are utilized for hydrocarbon extraction and processing. The platforms have tanks that provide the necessary floatation. Water is pumped into at least some of the tanks to provide ballast for positioning the platform at a desired draft. A certain amount of draft may be necessary to prevent capsizing under the effects of wind and waves during storms. The desired draft might be needed both for towing to a wellsite as well as while stationed at the wellsite.
Typically, when a platform is being ballasted to the desired draft, it will undergo a region of instability between the initial draft and the desired draft. While in the region of instability, the righting moment of the platform is insufficient to keep the platform upright if it heels excessively. The ballasting must be carefully controlled while in the region of instability to avoid a catastrophe.
Some platforms have a very deep draft, which may be hundreds of feet. Typically, these platforms having a single cylindrical column and may be called “spars” or “deep draft caisson vessels”. Typically, they are towed to the well site while in a horizontal position, then ballasted to an upright position. These vessels also undergo a region of instability, thus upending the structure at the well site has associated risks. After being upended and ballasted to the desired depth, a catenary mooring system is used to hold the vessel at the well site. A large barge and crane at the well site lifts a deck structure onto the spar after its is at the desired draft and moored.
U.S. Pat. No. 6,371,697 discloses a single column floater that has a larger diameter lower section to provide stability and buoyancy. This patent discloses towing the single column floater to the well site in an upright position. The vessel is towed to the well site at a towing draft, then ballasted at the well site to a desired draft. A catenary mooring system holds the single column floater on station. The deck and structure may be placed on the single column floater while at the dockside, avoiding a need for a barge and crane at the well site. Even though ballasting occurs while the vessel is upright, instability can still exist during the process.
One proposed method to provide stability during ballasting deals specifically with tension leg platforms (“TLP”). A TLP is not moored with a catenary mooring system, rather it is held on station by tendons under tension. The tendons comprise hollow, buoyant strings of pipe extending vertically upward from the sea floor to the platform. Normally the TLP is towed to the well site at a first draft, then ballasted to a second draft. The operator connects the tendons to the TLP and removes ballast to place the tendons in tension. U.S. Patent Application Publication 2004/0190999 discloses connecting pull-down lines between upper ends of the tendons and pull down devices on the platform. The operator applies tension to the pull-down lines while ballasting to avoid instability. When the tops of the tendons pass through the top terminations on the platform, the operator connects the tendons to the platform, removes the pull-down lines, and deballasts until the desired tension in the tendons is reached.
In this invention, the floating platform is equipped with a plurality of tension devices. Temporary pull-down lines are connected from the sea floor to the tension devices on the platform. The operator adds ballast to the platform and simultaneously applies tension to the pull-down lines with the tension devices until the platform reaches a desired draft. The operator then detaching the pull-down lines from the tension devices and moors the platform with a catenary mooring system.
In a preferred method, the temporary pull-down lines are located at a staging site. The operator tows the platform from a dockside to a staging site while at a first draft. The operator ballasts the platform at the staging site to a second draft, then tows the platform to the well site while at the second draft. The operator installs the catenary mooring system while at the well site.
The platform may be of a type having a single column. In a preferred method, the platform is a single column floater, and it is towed in an upright orientation.
Referring to
The contractor optionally installs decks 43 at dockside during construction of platform 33. Platform 33 is of a design that allows it to be towed while in a vertical orientation to the well site. However, while being towed to a well site, platform 33 should be at a safe towing draft. In
In order to place platform 33 in a desired ballast draft for towing, a pull-donor staging site is constructed where the water is deep enough to ballast platform 33 to the towing draft. The staging site, for example, may be in 200 to 500 feet of water. As shown in
Tensioning devices 53 are mounted to platform 33. Each tension device 53 may be a winch, chain jack, strain jack, rotating block, or other means for applying and maintaining tension in one of the pull-down lines 49. Pull-down lines 49 are secured to tension devices 53 after platform 33 is positioned over piles 47, as shown in
The operator then disconnects platform 33 from pull-down lines 49 and tows platform 33 to the desired well site. If desired, the operator may remove pull-down lines 49 from the sea floor. Once at the desired installation site, the operator moors platform 33 in a conventional manner using catenary mooring lines 57, each attached to an anchor or pile 59. The catenary mooring system may be conventional, with each mooring line 57 comprising an anchor rode that attaches to a pile 59 located beyond the perimeter of platform 33. Each line 57 extends from platform 33 to a pile 59 in a long, gradual curve. The perimeter defined by piles 59 is much greater in diameter than the perimeter of platform 33. The operator may wish to add ballast to platform 33 while at the well site. Tension lines or tendons are not required.
The invention has significant advantages. The pull-down lines allow one to ballast a platform through a region of instability with less risk than in the prior art. The method does not require tendons, rather may be used with catenary moored systems. The staging site allows one to ballast a platform to a safe towing draft before towing the platform to a remote well site.
While the invention has been shown in only one of its forms, it should be apparent to those skilled in the art that it is not so limited but is susceptible to various changes without departing from the scope of the invention.
This invention claims the benefit of provisional application Ser. No. 60/575,632, filed May 28, 2004.
Number | Name | Date | Kind |
---|---|---|---|
5330293 | White et al. | Jul 1994 | A |
5791819 | Christiansen | Aug 1998 | A |
6022174 | Husvik et al. | Feb 2000 | A |
6139224 | Michel et al. | Oct 2000 | A |
6190089 | Bennett et al. | Feb 2001 | B1 |
6230645 | Chow | May 2001 | B1 |
6273018 | Gottsche et al. | Aug 2001 | B1 |
6371697 | Huang et al. | Apr 2002 | B2 |
6503023 | Huang et al. | Jan 2003 | B2 |
6666624 | Wetch | Dec 2003 | B2 |
6786679 | Huang et al. | Sep 2004 | B2 |
6869251 | Zou et al. | Mar 2005 | B2 |
6932542 | Chianis et al. | Aug 2005 | B2 |
20040190999 | Wybro et al. | Sep 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050281623 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
60575632 | May 2004 | US |